
AL-TP-1992-0012 AD-A251 035

ARTIFICIAL NEURAL SYSTEMS APPLICATION TO
THE SIMULATION OF AIR COMBAT DECISION MAKING

A
R
M Jeffrey J. Roorda
S Michael X Crowe D I
T Ball Systems Engineering Division ELECT E

5580 Morehouse Drive AYF9.R San Diego, CA 92121-1709

0
N -

G
HUMAN RESOURCES DIRECTORATE

AIRCREW TRAINING RESEARCH DIVISION
Williams Air Force Base, AZ 85240-457

L
A
B April 1992

0 Final Technical Paper for Period September 1988 - November 1991

R
A
T
0 Approved for public release; distribution is unlimited.

R
Y

92-14072

92 5 o
11E

AIR FORCE SYSTEMS COMMAND
BROOKS AIR FORCE BASE, TEXAS 78235-5000

NOTICES

This technical paper is published as received and has not been edited by
the technical editing staff of the Armstrong Laboratory.

When Government drawings, specifications, or other data are used for
any purpose other than in connection with a definitely Government-related
procurement, the United States Government incurs no responsibility or any
obligation whatsoever. The fact that the Government may have formulated or in
any way supplied the said drawings, specifications, or other data, is not to be
regarded by implication, or otherwise in any manner construed, as licensing the
holder, or any other person or corporation; or as conveying any rights or
permission to manufacture, use, or sell any patented invention that may in any
way be related thereto.

The Office of Public Affairs reviewed this paper, and it is releasable to the
National Technical Information Service, where it will be available to the general
public, including foreign nationals.

This paper has been reviewed and is approved for publication.

RICHARD A. THURMAN DEE H. ANDREWS, Technical Director
Contract Monitor Aircrew Training Research Division

C, A A ROLL, Colonel, USAF
efllef, Aircrew Training Research Division

Form r d eREPORT DOCUMENTATION PAGE OMB 7W188
Public ~ep ut rdmn for this collection of h.lon es nuetosv .I thorwg r e, Inuir. the trne fw revIwing sutnctiom. searching e datl e sources, ,

the 1t naend PIIg end review Send cmm tle bwdon eetme= or:n=h. o er eaped c this coleci diredclthW bxdm to WbN WaHeduatrs Servics, Ofreefor lomlnOeac. 71J. taiDlsH~q S.
1204, Azrlkqton, VAr 2 WC& and to the 11c Marwegrnt and uge, UWwork Reduction Project (07040I18. WestI*I gon, DC 90

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE |3. REPORT TYPE AND DATES COVERED

AprI 1992 Final - September 1988 - November 1991
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Artificial Neural Systems Application to the Simulation of Air Combat C - F33615-88-C0006
Decision Making PE - 62205F

PR - 1123

6. AUTHOR(S) TA - 35

Jeffrey J. Roorda WU - 12

Michael X. Crowe

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) S. PERFORMING ORGANIZATION

Ball Systems Engineering Division REPORT NUMBER
5580 Morehouse Drive
San Diego, CA 92121-1709

9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY

Armstrong Laboratory REPORT NUMBER
Human Resources Directorate AL-TP-1992-0012
Aircrew Training Research Division
Williams Air Force Base, AZ 85240-6457

11. SUPPLEMENTARY NOTES

Armstrong Laboratory Technical Monitor: Dr. Richard A. Thurman, (602) 474-6561

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13.ABSTRACT (Maxkmum 200 words)

The research goals of this project were to ascertain the applicability of Artificial Neural Systems (ANS)
technology to expert systems tasks in general and to support the simulation of Air Combat Maneuvering
(ACM) decision-making in the training environment. In the experiments conducted under this program,
neural networks have aptly displayed their unique capabilities to overcome some of the more difficult aspects
of knowledge engineering. ANS approaches have been shown to be capable of producing robust,
generalized solutions even under novel circumstances. By capturing and simulating the expertise of human
pilots in a neural network, students may be provided with expert training devices which may come very close
to the look and feel of real air-to-air combat. It is expected that ANS technology will continue to provide
new solutions to the simulation of human performance for training purposes.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Air combat maneuvering Decision making Neural networks 100
Artificial intelligence Flight simulation .P
Artificial neural systems Flight simulators

17. SECURITY CLASSIFICATION 1. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THI PAGE OF CT

Unclassified Unclassified _ _ _ __UL

NON 754001-24OI --

CONTENTS

PROGRAM OVERVIEW........ I
Program Objectives 1
Overview of ACM Decision Making. 2
Scope of this Effort 3

THE NEURAL NETWORK APPROACH 4
Introduction to Artificial Neural Systems. 4
The Multi-Layer Back-Propagation Paradigm 7
Problem Representation Using Neural Networks 9
Representation Factors........ 10
Structure of the Input and Output Layers 11
Neural Network Training... 12
Structure of the Hidden Layers 12
Weight Adjustment Process 13
Selection of Training Data 18
Optimization of Training Parameters 19
ANS Support Hardware and Software Description 23
ANS Processing Hardware 23
HNC Support Software 24
BSED ANS Software 25

PRELIMINARY NEURAL NETWORK EXPERIMENTS AND RESULTS 30
Introduction........ 30
Angle Proximity Calculator 32
Range from Cartesian Coordinates 44
Tactical Situation Classifier 47
Lead Pursuit/Intercept Simulation 49
Description of the Algorithm 50
Representation 53
Generating Training Data 54
Training the Network 57
Comparing Algorithm and Network Performance 57
Scaling Up to the ACM Expert System 62

ARTIFICIAL NEURAL SYSTEM FOR THE REPRESENTATION AND COLLECTION OF ACM
DECISION-MAKING EXPERTISE 63

Introduction to ARCADE 63
ARCADE Neural Network Architecture 67
Input Layer 68
Output Layer. 7....................12
ARCADE Network Training'Process 74
Training Data Collection and Preprocessing 74
ARCADE Network Training 76
ARCADE Network Performance Evaluation 78
Objective Network Performance Evaluation 78
Subjective Network Performance Analysis 80 0
Conclusions of Network Performance 82

ifta

I1I

CONTENTS (CONTINUED)
Section PaEg

GENERAL FINDINGS AND CONCLUSIONS 83
Neural Network Structure 83
Spanning the Solution Space and Generalization 84
Training Parameter Optimization 85
Amount of Training 86
Summary of Network Performance 87

LIST OF FIGURES
Figure Page

1 BSED's approach to the ACM Expert system using a Neural
Network 5

2 Schematic Representation of a Typical Neural Network
Processing Element 6

3 Structure of a Typical Three-Layer Back-Propagation
Network 9

4 Provided with input pattern (X Y Z), the network has produced
output pattern (A D) via the hidden pattern (M N). The target
output pattern for this input is actually (A B), so the delta
between t. and o. is used to adjust the weight of the connection
between tie hidden layer element i and the output
element j 15

5 During the second step of the back-propagation process, the
sum of the output element deltas multiplied by their connection
weights to hidden element j is used to adjust the weight of the
connection between the input layer element i and element j of
the hidden layer 17

6 The asymptotic reduction of MSE as a function of network
training iterations 22

7 Arrangement of the ANZA Plus Hardware and Software
Components 25

8 Neural Network Training System with Delta Output Value
Plot Mode Selected 26

9 Neural Network Training System with Output Values
Plot Selected 27

10 Neural Network Training System with Statistics Mode
Selected 29

iv

LIST OF FIGURES (CONTINUED)

Figure

11 Load-Time Constants Modification 29

12 Run-Time Constants Modification 30

13 Evolution of the ACM Neural Network System 32

14 Mapping Angle Proximity Values to PE Activation Levels
Presents a Challenge in a Neural Network Representation 33

15 Theoretical Network Structure to Represent the Angle
Proximity Problem 34

16 Neural Network Structure for the EXPDA 35

17 Output PE Activity Levels as a Function of Input Angle
in the EXPDA Network Angle Proximity Experiment 37

18 Proximity Value Output as a Function of Input Angle in the
EXPDA Network 37

19 Points of Inflection in the Representation of Angles and
Proximities to Zero Degrees in the EXPDA Experiment . . 38

20 Points of Inflection in the Representation of Angles and
Proximities to +90 Degrees in the EXP2 Experiment 39

21 Output PE Activity Levels as a Function of Input Angle in the
EXP2 Experiment 40

22 Proximity Value Output as a Function of Input Angle in the EXP2
Experiment 41

23 Output PE Activity Levels as a Function of Input Angle in the
EXPR Experiment 42

24 Proximity Value Output as a Function of Input Angle in the
EXPR Experiment 43

25 Neural Network Structure to Map Cartesian Coordinates to Range
Values 45

26 Output PE Activity Levels as a Function of Input Coordinates
along the Diagonal from (0,0) in the Range from Coordinates
Experiment 46

V

LIST OF FIGURES (CONTINUED)
Figure PAoe

27 Range Output Values as a Function of Input Coordinates along
the Diagonal from (0,0) in the Range from Coordinates
Experiment 47

28 Neural Network Structure used to Represent the Tactical
Situation Classifier 48

29 The Basic Operating Parameters of the Lead Pursuit/Intercept
Algorithm 50

30 The Lead Pursuit/Intercept Neural Network Development

Process 51

31 Flow of Control in the Lead Pursuit/Intercept Algorithm . 52

32 Sample Lead Pursuit/Intercept Profiles against a
Non-Maneuvering Target 53

33 Network Structure of the Lead Pursuit/Intercept Demonstration
System 54

34 Sample Display Screen from the Lead Pursuit/Intercept
Neural Network Demonstration 58

35 Flow of Control in the Lead Pursuit/Intercept
Demonstration 59

36 Lead Pursuit/Intercept Demonstration - Non-Maneuvering
Target 60

37 Lead Pursuit/Intercept Demonstration - Maneuvering Target 61

38 Lead Pursuit/Intercept Demonstration - Direct Path 62

39 ARCADE Display 64

40 Internal Architecture of ARCADE 65

41 Flow of Control of ARCADE 66

42 ARCADE Initial Conditions File 66

43 ARCADE ANS Internal Architecture 68

44 Typical Air Combat Geometry - Top View 70

45 Typical Air Combat Geometry - Side View 71

vi

LIST OF FIGURES (CONTINUED)

Figure

46 ARCADE Neural Network Input Layer 72

47 Data Windows for Reading Information from the SAAC
ACM Data Tapes 73

48 ARCADE Network Experiment #1 - Training and Test MAE . . . 80

49 ARCADE Engagement - User Aircraft versus Adversary
WVR-29 81

50 ARCADE Engagement - Adversary WVR_29 versus
Adversary WVR_29. 82

LIST OF TABLES

Table Page

1 Optimization Parameters for Neural Network Training . . . 21

2 Sample Section of the Lead Pursuit/Intercept Training
Data File 56

3 ARCADE Network Input Parameters and Operating Range . 69

4 ARCADE Network Output Parameters and Operating Ranges . 72

5 SAAC Training and Testing Data Files 75

6 ARCADE Network Experiment #1 - Network Definition and
MSE/MAE 77

7 ARCADE Network Experiment #1 - Test MSE/MAE 79

Vi'

PREFACE

This final technical paper for the Air Combat Maneuvering Expert System (ACMES)
Program Research and Development Announcement (PR DA) was prepared for the Armstrong
Laboratory, Human Resources Directorate, Aircrew Training Research Division (AL/HRA)
under Contract Number F33615-88-C-0006 with Ball Systems Engineering Division (BSED).
The research reported herein was performed between 29 September 1988 and 30 November
1991. The government program monitor for this task was Dr. Richard A. Thurman (AL/HRA).
Additional programmatic support was provided by Dr. Byron J. Pierce, Dr. Wayne L. Waag,
and Dr. Thomas H. Killion, all of AL/HRA, and by Mr. Bart Raspotnik of Logicon, Inc.

In addition to this paper, documentation of the ACMES includes an executive summary,
a user's manual, an analyst's manual and a programmer's manual.

viii

ARTIFICIAL NEURAL SYSTEMS APPLICATION TO THE SIMULATION OF

AIR COMBAT DECISION MAKING

PROGRAM OVERVIEW

Program Objectives

The stated objective of Program Research and Development Announcement
(PRDA) 87-7, entitled "Expert Systems Approach to Modeling Pilot Decision

making in Air Combat Maneuvering" is to design, develop, and validate a

computer-based expert model of pilot decision making in air combat maneuvering

(ACM). PRDA 87-7 is part of a program which is geared toward the eventual

production of an expert system trainer capable of providing ACM decision

training to F-15, F-16 and T-38 pilots. An expert model of air combat
maneuvering would enhance the effectiveness and consistency of ACM decision-

making training. The concept is to provide the student and instructor pilots

(IPs) with an ACM training station which displays the interactions of the
student's aircraft with a simulated adversary aircraft. The ACM expert model

would control the adversary aircraft's reactive maneuvers, resulting in

behavior that is similar to an experienced pilot in the identical tactical

situation. In addition, such a system could also be used to demonstrate

correct maneuvering of the student's aircraft. For example, when observing

the student perform a maneuvering error, the IP could stop the simulation,

back it up a few seconds, and let the expert system take over to show the

student pilot a better sequence of maneuvers.

Armstrong Laboratory's Aircrew Training Research Division (AL/HRA)
contracted Ball Systems Engineering Division (BSED) to focus its efforts under

this PRDA on the development of the ACM Expert System. Many techniques have

been explored in the past for capturing, representing, and recalling knowledge

in a fast and reliable fashion, but all have suffered from major inadequacies

in terms of knowledge acquisition, speed of recall, generalization, knowledge

base size, and the ability to handle incomplete or inaccurate data. Though

some improvements have been made using traditional artificial intelligence

(Al) methods, current systems continue to become overwhelmed by size and speed

constraints, and many of the aforementioned technical hurdles remain. The

field of Artificial Neural Systems (ANS), also known as Connectionism and

I

Artificial Neura1 Networks, has shown much promise in overcoming some of the

more intractable elements of simulating intelligent behavior. Therefore, BSED

chose A-tificial Neural Systems as the preferred approach for accomplishing

the objectives of the ACM Expert System PRDA.

Overvtew of ACM Decision Making

The intent of the ACM Expert System is to simulate the decision behavior

of fighter pilots who have acquired a certain proficiency in air-to-air

combat. By directly modeling human experts, the details and nuances of

successful ACM performance can be used to train others to achieve that level

of performance. In an air-to-air engagement, once an adversary aircraft has

been detected, the pilot begins a decision process based both on his own goals

and expectations, and on the actions of the adversary. The basic goal of an

aircraft pilot during air combat maneuvering is to destroy the adversary

aircraft while simultaneously avoiding the destruction of his own aircraft.

They accomplish this goal by maneuvering their aircraft through three-

dimensional space in an effort to obtain a position (relative to the adversary

aircraft) which allows the adversary aircraft to be attacked. At the same

time, they must avoid the adversary's attempts to maneuver into an attack

position against their own aircraft.

Though the above description provides an adequate top-level outline of

the fundamentals of air combat, there are a number of other factors which

influence the performance of ACM, such as the limitations of the aircraft

weapon systems, the use of countermeasures, weather conditions, and the

prevailing rules of engagement. A fielded ACM training system would require

that these variables be taken into account to provide the proper "success"

criteria profile which would emphasize and build upon all the relevant

elements of effective maneuvering and weapons employment. However, the basic

requirement of air combat is the generation of a successful sequence of

maneuvers based on the relative geometry of the engaged aircraft. A
"successful" engagement is one in which the elimination of the threat is

coupled with the survival of the ownship. This is the framework upon which

the ACM Expert System was established.

2

Scope of this Effort

BSED's effort under this PRDA has been focused to specific neural network

approaches within a specific ACM domain. The objective for the ACM Expert

System is the production of realistic air combat maneuvers under within visual

range (WVR) tactical situations. Beyond-visual-range (BVR) maneuvering,

countermeasures utilization, and weapons employment are outside the immediate

scope of this effort. Furthermore, though it is feasible to apply the

approaches used in this effort to the multi-ship arena, the ACM expert system

was designed for one-versus-one engagements.

In terms of neural network research, no attempt was made to provide a

comprehensive assessment of various network paradigms. Rather, a single

paradigm (with some variations) was used for all neural network experiments.

The intent here was to focus on the ANS approach with the highest potential

for building a working solution to the ACM Expert System, and to demonstrate

in detail the usefulness and limitations of neural network technology for the

simulation of ACM decision making.

There are two basic issues at the design level which have been used to

guide BSED's development of the ACM Expert System: (a) What does the pilot

need to know when making ACM decisions and (b) What is the form of the pilot's

decision output that leads to changes in the aircraft's flight path? At the

implementation level, the overriding question is: How can neural network

technology best be applied to bring about new solutions in the simulation of

ACM decision making? The goal of this effort was to create a system which

takes situational data as input and combines it in the proper way to produce

a reasonable and realistic maneuver as output. Input data takes the form of

relative geometry and specific aircraft parameters which the pilot might use

and would have available during a real ACM engagement. The chosen form of

output control is the amount of heading, pitch, and velocity control required

throughout the flight envelope. The resulting system provides a working

framework for the evaluation of neural networks which simulate air combat

maneuvering and allows for the extension of these results to other simulations

of expertise and training environments.

3

THE NEURAL NETWORK APPROACH

Introduction to Artificial Neural Systems

BSED's technical approach to simulating pilot decision-making expertise
involves the use of Artificial Neural Systems (ANS) technology, a relatively

new approach for information processing. ANS, commonly referred to as neural

networks, provides a methodology for combining or associating data or

knowledge through a "self-organization" of the representational system. In

other words, a neural network produces a mapping which mathematically relates

the input space to the output space. This mapping technique mey be applied to

any problem where the underlying function of association is complex or

unknown. As applied to the ACM Expert System, this mapping capability is

utilized to model human performance by learning the association between the

tactical situation and the correct maneuver response. Rather than capturing

expertise as a set of logical "if-then" rules, as is done in traditional

artificial intelligence (AI) expert systems, a neural network develops

expertise by adapting its internal arrangement in response to examples of

expert behavior. While some existing ACM simulations rely on the diagnostic,

pattern recognition capabilities of Al expert systems, others use a value-

driven, trajectory prediction technique to determine a course of action. An

ANS-based system can combine these approaches in that the system can learn to

associate the recognition of a pattern with the selection of the proper course

of action.

In BSED's ACM Expert System, the neural network creates a mapping or

association from the tactical situation (input space) to the appropriate

maneuver response (output space), as is shown in Figure 1. To serve as a

source of expertise for the ACM Expert System, engagement profile data was

selected from the Simulator for Air-to-Air Combat (SAAC), which is a man-in-

the-loop, multidome simulator at Luke AFB, Arizona. The underlying assumption

of this expert system development process is that given a sufficient

representation of the input parameters, a general relationship exists between

tactical conditions and maneuver responses that can be resolved and duplicated

computationally. By using the performance of pilots during SAAC engagements,

it was anticipated that representative examples of this input/output

relationship could be collected and used to train a neural network.

4

INUT RESPONSE APPROPRIATE
FEATURE FEATURE MANEUVER

TACTICAL SITUATION VECTOR VECTOR

UAL

NIETWORK

Figure 1. BSED's approach to the ACM Expert System using a Neural Network.

The internal arrangement and behavior of a neural network which allows

such a mapping to be accomplished is drawn from the massively parallel and

highly distributed processing arrangement found in the brain. Specifically,

neural networks are biologically motivated models of information processing.

They use the interactions of simulated neurons to store, recognize, and recall

knowledge. Neural networks are often constructed as a hierarchy of layers.

Each layer contains some number of simulated neurons, technically known as

processing elements (PEs), which are interconnected throughout the network.

The strengths and structure of these interconnections are what determine the

system's ultimate operation. The strength of a connection, the extent to

which one PE affects another, is known as the weight of the connection.

Figure 2 is a pictorial representation of a typical processing element in a

neural network.

In Figure 2, processing element j receives some number of inputs, i, from

other PEs in the network. The levels of each of these input signals, xi, are

multiplied by their connection weights, wi, and summed together-to produce Sp

the total signal into J. In general, this summation represents the external

influence of other PEs on PE J. Si is used to calculate an update value to

Ajnew, the current level of activation, or state, of PE J. The new activation

level is then applied to a threshold function to determine O, the output

signal to be produced by J. The output is then received by other PEs in the

5

xl
X 1 .Wj ,, , PE j

xW

Xi

INPUTS FROM WEIGHTS OUTPUT FROM PE j
OTHER PES TO OTHER PEI

Figure 2. Schematic Representation of a Typical Neural Network Processing
Element.

network. The activity of an individual PE as described above can be

represented mathematically by the following equations:

Si - ciwj, (1)

Ainew - f(Ajold,Sj), (2)

Oj - g(Anew) (3)

where Sj is the summation value of PE J, Ajnew is the new activation level of

PE J, f() is some activation function which produces the new activation based

on the current activation and summed input, Oj is the output of PE 1, and go

is some thresholding function for determining the level of output.

Thresholding equations generally have a sigmoldal form as in equation (4).

6

Oj 1 .(4)
+

Since the weights and the PE activation levels can have both positive and

negative values, the processing elements can have both excitatory and

inhibitory influences on other PEs in the network. PE output levels are

usually continuous values scaled between 0 and I or between -1 and +1.

Weights vary over a wider range of values. A large absolute weight value

represents more potential influence among PEs. A weight value of zero

indicates that no connection exists between those two PEs.

This approach to information processing differs significantly from

traditional computing methodologies. For example, most computers are based on

the operation of a single, complex central processing unit, the CPU, whereas

neural networks utilize the effects of many, simple processing elements.

Traditional computing is done in a step-by-step, serial fashion, while neural

networks operate through a parallel update of the PEs. On traditional

computers, solutions are programmed via algorithms which are executed as a

series of instructions. The neural network has no algorithm; it learns how to

operate through examples of correct behavior and the resulting knowledge is

stored in the structure of the network. Finally, traditional computing

approaches provide precise answers for problems where the underlying function

or algorithm is known to the programmers. Neural networks usually provide a

more general solution to problems where the underlying algorithm is not known

or is extremely complex.

The Multilayer Back-Prooagation Paradigm

Many ANS paradigms have been developed to accomplish the determination of

a mapping between input and output data; some are better understood than

others. The specific neural network paradigm used for the ACM Expert System

representation is the Multilayer Back-Propagation Network (MBPN) which is the

most common and most successful neural network paradigm in current usage. The

internal rules and procedures for how the MBPN network arrives at a set of

associations for ACM performance need not be specified by the programmers.

Rather, ACM expertise is represented in the patterns of activations and the

weighted connections of the network's processing elements. The neural network

7

requires only that the problem be represented in terms of an input vector

which represents the current tactical situation, and a corresponding output

vector which determines the correct maneuver response. To achieve the proper

set of weights and activations, a back-propagation network is trained by

being exposed to examples of correct performance. During the network's

learning process, expert performance is used to generate the values of the

input and output vectors which are then clamped to certain processing elements

of the neural network as their activation levels. Through a series of

associated input and output examples, these clamped activation levels

methodically influence and adjust the rest of the network until a general

solution to the mapping between input and output is found.

In the back-propagation paradigm, there are three or more layers of

processing elements. The first layer is the input layer to which (in the case

of the ACM Expert System) the tactical situation is presented, and the last

layer is the output layer which produces the maneuver response. The component

values of the input and output vectors are represented by the activation

levels of the PEs in those layers. Between the input and output layers are

one or more hidden layers of PEs which are responsible for building up

explicit and implicit associations between the input and output feature

vectors. This multilayer arrangement allows associations of a more abstract

nature to be formed than would be possible with just two connected layers.

Figure 3 is a diagram of a typical three-layer back-propagation network.

The weights in such a structure would occur where connections are made from

the input layer to the hidden layer and from the hidden layer to the output

layer. It should be noted that most back-propagation implementations include

a bias element which has a constant activation level of 1.0 and makes a single

weighted connection to -each PE of the hidden and output layers. The bias

weights are included in the structure to allow the network to reproduce a

broader class of mappings.

8

, 7 1"-- -.,, : . ., -. ... FJWAE _7.... .4, :

PRODUCTION OF OUTPUT PATTERN

OUTPUT LAYER PES

WEGHTEDa a.

CONNECTIONS
FROM HIDDEN LAYER

HIDDEN LAYER PES

WEIGHTED

FROM INPUT LAYER

INPUT LAYER PROCESSING
ELEMENTS (PES)

PRESENTATION OF I4PUT PATTERN

Figure 3. Structure of a Typical Three-Layer Back-Propagation Network.

Back-propagation works by employing a concept known as the generalized

delta learning rule. This means that the neural network is trained to

associate specific sets of input and output data by being taught the

difference, or delta, between the results it produces and the actual desired

result. Neural network training simply means repeatedly presenting the

network with correct examples of associated input and output data and allowing

the system to adjust itself when mapping errors occur. Naturally, the errors

will be quite large when training begins and will gradually decrease as

training continues. When fully trained, the network will be capable of

reproducing the response performance of the data in the training set. In many

cases, a properly trained network is capable of providing the correct output

response to "noisy" input data or even to input data upon which it has never

been specifically trained.

Problem Representation Using Neural Networks

One of the key elements of any neural network implementation is the

representation of certain key parameters at the input and output layers. Next

9

to the selection of training data, the input/output representation selected

for the neural network embodies the majority of knowledge engineering required

to produce a successful system. The following section describes the process

of constructing a problem representation with an MBPN neural network.

Representation Factors

A critical element in the design and development of a neural network is

the selection of specific components of the problem domain to be represented

in the form of the input and output vectors. It is important that the problem

be represented by input and output components which are relevant to the real-

world association between those elements and for which an underlying mapping

exists. Furthermore, an initial representation system must be chosen

carefully to ensure that this initial system will eventually scale up

successfully to represent all facets of the full problem. If the final

representation must be altered drastically from the prototype, the validity of

the initial representation may not carry through to the later forms. As an

example of how to build a neural network representation, consider the ACM

Expert System domain. At the input layer, an initial representation could be

approached by determining a minimal set of tactical input data that might be

required by a combat pilot when making ACM decisions in a one-versus-one

engagement. Similarly, the components of the output response might be chosen

to meet a minimal set of aircraft flight control commands to direct aircraft

maneuvering. In addition to these domain-specific requirements for sufficient

representational accuracy in a neural network, there are some other important

driving forces behind the selection of specific representations for the input

and output vectors.

First, it is desirable to maintain a reasonable working size for the

initial network. There is a tendency to place all possible decision criteria

in the input layer and let the network decide what is important and what is

not. The initial representation should be limited to only the most crucial

elements of the input/output mapping. Having established this initial

limitation, one must keep in mind that the chosen representation scheme must

be capable of being scaled up to model additional input and output parameters

if necessary. Also, the input/output design should ensure that the

representation in the network is compatible with data available for network

10

training. In the case of the ACM Expert System, this means that the network

representation should be compatible with or a subset of available SAAC data

upon which system training is to be based. At the implementation level, the

network designer must decide whether to use the values of the input/output

components directly in the network or utilize some transformed representation.

Structure of the Input and Output Layers

For the ACM Expert System, the structure of the input vector should be

based primarily on what the pilot (and presumably the expert system) needs to

know about the prevailing tactical situation to arrive at a reasonable

maneuver response. More specifically, the input vector should represent the

top-level, dynamic variables which define the tactical situation between the

competing goals of the pilot and adversary aircraft. The term top-level

refers to situational data that is directly perceived by the pilot from the

environment which relates to the present situation. Relative positions and

orientation of the two aircraft are examples of top-level data. An example of

data that is not top-level would be whether the current geometry is defensive,

offensive, or neutral for the pilot. This implicit meta-level knowledge will

be discussed later when the internal representations of the model are

described. Dynamic data are those parameters which change in value over the

course of the ACM profile. Non-dynamic data may be excluded from the input
vector because the system will simply learn to operate within the constant

constraints dictated by these factors where they are present in the training

data. For example, the aerodynamic limitations of the aircraft need not be

spelled out specifically to the neural network via the input vector, yet will

become an implicit part of the simulation's maneuver responses by virtue of

their existence in the responses found in the training data. Of course, like

the human pilot, such a neural network would likely have to be retrained to

effectively fly a different aircraft with different aerodynamic limitations.

The output of the ACM neural network is the output or response vector

which represents how the simulated pilot should maneuver the aircraft under

the prevailing tactical conditions. Not only must the output vector provide

a sufficient representation of the maneuver response, it must also be capable

of being translated into a set of parameters that can drive the operation of

II

an aerodynamic model. This is how the ACM neural network influences events in

the operating environment.

Neural Network Training

Neural networks are trained to accomplish a desired mapping between input

and output states by being repeatedly exposed to examples of the input/output

association. This training process is dependent on the correct structuring of

the hidden layers of the network, the selection of various learning parameters

of the back-propagation algorithm, the selection of appropriate examples to

make up the training set and the optimization of the duration of exposure to

the training examples.

Structure of the Hidden Layers

The ability of a neural network to successfully learn and recall the

proper mapping upon which it has been trained is based entirely on the

structure and connection weights of the system. The input and output layers

provide the interface to the outside world, and through them, the network is

trained to accomplish the desired mapping. However, it is the internal

structure, the connections to, from, and between the hidden layers of the

neural network where the system learns how to produce the proper responses to

certain input conditions. In the ACM Expert System, these internal

connections and weights embody the expertise of the simulated pilot.

While the representations of the input and output vectors are made very

explicit prior to training the network, it is difficult to predict with

certainty what the processing elements and interconnections of the middle

layers will come to represent. After training the ACM network, however, there

will be certain emergent properties of the network's internal conformation

which will represent the abstract nuances of successful ACM performance.

Meta-level knowledge structures like maintaining speed, building energy, and

gaining lateral separation, become embodied in the activation levels and

connection weights of the system without being explicitly programmed by the

system designers.

12

This is one of the fundamental benefits of the neural network approach.

Determining how a human expert combines the information received by the brain

into a useful response is very difficult to spell out as a set of rules. The

amount of knowledge, and the types of combinations of that knowledge, are

vast. Often, the expert is not capable of furnishing a detailed explanation

of precisely why a certain action was taken. But the neural network, with the

proper representation and training, will self-organize to arrive at its own

understanding of how decision responses are formed. The weights and

connections of the hidden layers will eventually store the decision

strategies, which are learned automatically through example, as an implicit

set of internal rules.

Weight Adjustment Process

Supervised neural network training, as is used in the back-propagation

algorithm, consists of repeatedly providing the system with input data,

observing the response at the output layer, and using the difference between

the current and desired output values to alter future responses in the desired

direction. This is accomplished by propagating output errors back through the

layers of PEs and making the appropriate weight adjustments where necessary.

Each weight adjustment moves the overall state of the network in the direction

of a global solution to the input/output mapping. Such a procedure obviously

requires a known set of correlated input/output vectors which can be used to

train the network.

During the neural network training process, input feature vectors which

represent the current decision conditions are presented to the network. From

this data, the network uses equations (1), (2), and (3), previously listed, to

arrive at an appropriate output response. This calculated response is then

compared to the correct, or target response from the training data, and the

difference between the two, the error, is fed back into the network to correct

the association between input and output. In effect, this teaches the network

which output to produce when it sees that kind of input data again. As the

process continues in this fashion, the neural network will eventually provide

the correct response for each input situation upon which it was trained. At

this point, training is considered complete for this network, and it may be

used in a feed-forward mode where no back-propagation of errors is required.

13

Back-propagation training is a multi-step process, each step providing

adjustments to a single layer of interconnections. Assuming a three-layer

system as shown in Figure 3, the first back-propagation of errors, or deltas,

produced at the output layer of PEs, adjusts the weights of the connections

between the hidden layer and the output layer. The weight change equation

governing this adjustment has the form

Awji(t+l) - a(6jsi) + BAw11(t) (5)

where Aw11(t+1) is the current weight change to be made to the connection from

the Ith hidden element to the jth output element, Awj1(t) is the previous

weight change made to this same connection, 8 is a momentum term which

determines the effect of past weight changes to the current adjustment, a is

a learning rate term which determines how large each adjustment should be, and

s, is the activation value of the Ith hidden element projecting to the jth

output element. When calculating the deltas for the output elements, the 6,

term in the above weight change equation is defined as

8j = (tj - o1)f'1(netj) (6)

where tj is the target activation value for the Jth element of the output

pattern, oj is the actual activation value produced by the system at the jth

element of the output pattern, and f',() is the derivative of a "squashing"

function which operates on net,, the sum of the inputs into output element j.

In most cases, the squashing function is a sigmoidal function of the form

14

oi -fj(netj) - (7)

and the derivative of this function would then be

f'1(net,) - o,(l - o,) (8)

where net, - Zsiwji. The sigmoidal form used in (7) is also used as the

thresholding function for calculating activation and output from the sum of

inputs as given in equations (2) and (3). Figure 4 shows how this delta

calculation and weight adjustment is carried out for the hidden-to-output

connections. These updates are also carried out for the bias weights, though

the single processing element in the bias slab maintains a constant activation

value of 1.0.

"1 - A 5 T es

O - A 0 0i -0

mM NSi

Ip X Y z

a-(Tj -Oi)f'(NETD)

NETJ. X S. W

I I1P

Figure 4. Provided with input pattern (X Y Z), the network has produced
output pattern (A D) via the hidden pattern (N N). The target
output pattern for this input is actually (A B), so the delta
between t. and o. is used to adjust the weight of the connection
between te hidden layer element I and the output element J.

15

In the second step of the three-layer back-propagation training process,

weight adjustments are made to the connections between the hidden layer of PEs

and the elements of the input layer. The weight adjustment process uses the

same formula as defined in equation (5), but at this stage, the term Awjj(t+1)

refers to the current weight change to be made to the connection from the ith

input element to the jth hidden element, and Awpf(t) is the previous weight

change made to the same connection. The B and a terms are the same, but si no..

refers to the activation value of the ith input element sending output to the

jth hidden element. When calculating the deltas for the hidden elements, the

6, term in equation (5) is defined as

6. = f'j(netj)6kW 1 (9)

where f'() is the derivative of the "squashing" function which operates on

net1, the sum of the inputs into hidden element j from the input elements, and

lskwki is the sum of the previously computed deltas of the k output elements

which connect to hidden element j multiplied by their connection weights, wkj.

Figure 5 shows the input-to-hidden layer delta calculation and weight

adjustment process.

The back-propagation algorithm is a gradient-descent heuristic, which

means that the weight changes will minimize the squares of the differences

(error) between the actual and the target output values. This error function

is known as Mean Squared Error (MSE). The back-propagation process attempts

to move across the multidimensional weight space so as to continually reduce

this error function. The weight space may be visualized as a landscape with

various wells, valleys, hills, and ridges. Somewhere in this landscape is a

lowest point or global minimum, which represents the optimal performance of

the network. The MBPN process adjusts the weights so that the weight surface

is traversed in the steepest fashion. However, it does not guarantee that the

global minimum will be found; the process may get trapped in a valley which

represents only a local minimum. Finding the global minimum is the goal of

network processing, and the techniques for doing so (and avoiding local

minima) will be discussed later. One cycle of the network's operation,

including weight updates if necessary, is referred to as a single iteration.

The entire training process may take thousands or even millions of such

16

iterations before the system settles into a minimum well, and the proper

mapping is learned.

Since the gradient descent process attempts to minimize Mean Squared

Error, the most common method for measuring the performance of a back-
propagation network during training is to calculate the Mean Squared Error

over the entire set of training data. The value for MSE is calculated using

the following equation:

NM
MSE = 1/N I I (tjk -OL (10)

kj

T p °A

Op A O

1) ,,.

ip x Z

j I II (NEL DZ kWkj

k

NETJ. I S.W..
i 'L'

Figure 5. During the second step of the back-propagation process, the
sum of the output element deltas multiplied by their connection
weights to hidden element j is used to adjust the weight of the
connection between the input layer element i and element j of the
hidden layer.

17

where L is the index of the output layer, M is the number of elements on the

output layer indexed by j, k is the index of iterations, and N is the number

of consecutive iterations since the error calculations were last initialized.

MSE is only one Measure of Effectiveness (MOE) for the performance of the ACM

neural network, and other validation techniques will be discussed in the

section titled 'Artificial Neural System for the Representation and Collection

of ACM Decision-Making Expertise.'

Batching is one additional variation sometimes used in MBPN training.

When using batching during the training process, a selected number of delta

weight calculations are accumulated and averaged prior to weight adjustment.

For example, with a batch size of 100, the system is exposed to 100 training

associations before the cumulative effect of the delta weights makes its

weight adjustment. The intent of t';e batching process is to accumulate a more

representative gradient direction from a number of samples rather than basing

the weight change decisions on each individual training association. However,

since the overall number of weight updates is reduced when batch sizes are

greater than one, it may take longer for the network to converge to a

desirable level of response.

Selection of Training Data

The ultimate effectiveness of a neural network to reproduce the decisions

the expert is able to make is fundamentally dependent on the set of data used

to train the network. Since the desired outcome is the simulation of pilot

performance, it is necessary to locate a source of consistent and controllable

performance data. Before obtaining training data, certain preselection

criteria must be met. In order to facilitate the learning of the network, the

training data should be selected to be as consistent as possible and decision

conditions present within the data should not take place under conditions not

represented by the input vector. For example, the network should not be

trained to maneuver with and without weapons if the input representation

provides no indication to the system as to weapons availability. It is also

useful to select data at a consistent level of proficiency, presumably from

consistently "good" performances, to the extent that this is possible.

18

Another consideration is that the selected training data adequately span

the entire solution space. Exactly what the solution space is can be

difficult to specify in complex, multidimensional problems like the ACM

representation. In general, the solution space consists of all the possible

associations of input with output. The important point regarding the solution

space is that training data is selected to represent a relatively uniform

distribution over the entire space. To better understand the concept of a

solution space, examine the relatively simple ANS experiments described in the

paragraph on 'Preliminary Neural Network Experiments and Results.'

Unless the solution space can be specified at some level of detail, one

is forced to choose data in a random fashion from real-world examples and

assume that this selection will adequately span the possible conditions to

which the network will be required to respond. When the training data is

selected appropriately, the network will form a mapping which allows it to

generalize solutions from the relatively small set of training examples. This

means that the neural network will be capable of responding correctly to novel

situations that were not seemingly reflected in the training data. The

ability of neural networks to generalize successfully from the training data

is clearly illustrated in the experiment described in the Angle Proximity

Calculator paragraph, and is discussed in some detail with regard to the Lead

Pursuit/Intercept Simulation system.

Optimization of Training Parameters

In addition to the creation of an optimal network training file, one must

determine the most effective structure for the hidden layer(s) and to fine-

tune the learning equations. There are certain useful heuristics in the

development of the neural network's internal structure, but discovering and

applying those heuristics is an acquired skill in these early days of ANS

research. The number of PEs used in the hidden layer(s) is partially a speed-

versus-accuracy question in that more PEs means more connections and,

therefore, longer training cycles. At the same time, a sufficient number of

PEs must be present to successfully accomplish the desired mapping. Depending

on the specific association that is being learned, the number of PEs and

connections directly determine the network's capacity.

19

The exact capacity of the network, or number of associations learned, is

difficult to measure since the network is expected to generalize over many

more associations than it is actually trained. The question of capacity is

more correctly stated as the performance of a network on a general set of test

data. This performance may be measured by the minimization of Mean Squared

Error (MSE), or by some other domain-relevant scoring metric. In general, the

number of hidden PEs is gradually increased from one until the optimal

performance is found. Another factor, however, must be taken into

consideration. If too many internal PEs are present, the system may
"memorize" the training data associations, but be completely unable to

generalize to the broader scope of the problem. When this happens, the

network will exhibit very good performance on the training set, but a broader

test set will show poor correlation between input and output.

The rationale for multiple hidden layers in neural networks is that

higher, abstract concepts may be encoded. The idea is that multiple layers

allow for additional ways for the network to divide up the problem space.

BSED has been unable to ascertain in any detailed, consistent fashion that the

performance of a four-layer network is better than a three-layer system for

the same problem.

After both the training file and the network structure have been defined,

the next step is to find the optimal values for each parameter in the network

initialization and training process. For example, when the network is

created, the weights must be assigned some initial values before training

begins. Without any previous data to guide this initialization, the best

approach is to simply assign random values to the weights. However, both the

seed value for the random number generator and the allowable range for the

random values themselves may affect the eventual performance of the trained

network. In effect, they determine the starting point for the gradient

descent process on the weight surface. Due to the complexity of the weight

surface in most large networks, there are probably many paths to the global

minimum. Consequently, the value chosen for the random seed has little effect

on the final performance of the network, as long as training time is long

enough. The optimal range for the initial weight values can have a greater

effect, but may also be determined in a more systematic fashion.

20

When choosing a range for the initial weights, a primary heuristic is

that small initial weight values (less than ±1.0) create a network that is

generally less "committed" to any specific set of input values. In a sense,

this makes the network more truly random. Initial ranges are usually set

between ±1.0 as a default value. By trying a few different range values

around ±1.0 and observing the pattern of Mean Squared Error reduction after a

fixed number of iterations, a curve with a minimum point of inflection can be

plotted. The minimum point indicates the lowest MSE, and thus provides an

indicator for the optimal range for the random initial weight values. A

similar process may be followed for the learning rate, a, the momentum term,

B, the batching size, and the steepness of the sigmoidal thresholding

equations. Each value is chosen so as to optimize (in a local fashion) the

reduction of MSE for a given training set.

It should be noted that this optimization of training parameters based on

minimization of MSE over a fixed sample set provides only a rough indication

of the "best" values. However, experience has shown that approximate values

for these parameters are all that is required for successful learning

capability in the network, if learning is possible at all. In other words,

small variations in these parameters beyond the rough estimate usually

provides very little additional improvement in MSE reduction. The full set of

parameters that may be optimized for MBPN training is shown in Table 1.

Table 1. Optimization Parameters for Neural Network Training

Alpha - Learning Rate

Beta - Smoothing or Momentum Term

Batch Size

Network Structure - Number of layers, Number of PEs and
Connections From Inputs to Outputs

Initial Weight Range

Random Seed for Initial Weights

Activation Function Type

Steepness of Activation Function

21

The optimal duration of training is best determined by observing MSE as

training progresses and by noting the absolute differences in the desired and

computed output values. In general, it is desirable to continue training

until the output deltas in the training set become very small. Every problem

will require a different amount of training to achieve the desired level of

performance. Where a clear correlation exists, and if the data set has been

selected properly, the network will perform most effectively when it has

minimized MSE for the training set. This is apparent when MSE is very small

and no longer changing. The gradient descent algorithm proceeds

asymptotically, so the vast majority of learning occurs at the beginning of

training. This phenomenon is shown pictorially in Figure 6. It is possible,

however, to "overtrain" the network, causing it to lock in on the training

samples and lose its ability to generalize. This effect is similar to the

case when too many hidden units are used. Also, with complex networks, MSE

may not decrease monotonically, and MSE alone may not provide a sufficient

guide for network performance measurement.

CA2 1.0-
0 0.8'

W 0.60X

(0.4

Co) 0.2

0 ' 1 2 3 4 5 6 7 8 9 10

ITERATIONS (xl 000)

Figure 6. The Asymptotic Reduction of MSE as a Function of Network
Training Iterations.

22

7 - 7-..

ANS Suoort Hardware and Software DescriDtion

In order to support the research and development efforts r' this program,

a specialized computation environment was developed which enables the rapid

prototyping of neural network architectures and provides for effective

visualization of the problem domain. This advanced computing environment is

described in the following section.

ANS Processing Hardware

Neural network processing can place an extreme burden on conventional

computer hardware, so specialized equipment in now being utilized to provide

greater network size and processing speed capabilities. The development and

implementation of the neural network code for the ACM Expert System has made

use of a customized neural network processing board called the ANZA-Plus

Neurocomputer from Hecht-Nielsen Neurocomputers (HNC). The ANZA-Plus

coprocessor is part of an 80386-based computer system which is optimized for

training and executing neural network software. A software development

package for building and interfacing to various neural networks is included

with the ANZA-Plus system. The ANZA-Plus coprocessor has a maximum combined

capacity of 2.5 million processing elements and interconnections. Typical

sizes of the combined number of PEs and interconnections for the ACM Expert

System network are currently in the range of 500 to 1000, leaving plenty of

room for future growth. The memory capacity on the board itself is 10

megabytes which allows for fairly large training sets. The processing speed

for back-propagation training on the ANZA-Plus is 1.5 million interconnect

updates per second. During run mode, the processing speed jumps to 6 million

sustained interconnect updates per second. These speed and size limitations

are easily outside any demands that a near-term realization of the ACM Expert

System neural network might require, and it is anticipated that the ANZA-Plus

will serve as an adequate development and delivery environment for future

versions of this work.

The host computer for this program is a Zenith 386/16 system running

under the DOS 3.31 operating system. The 80386 microprocessor in this machine

operates at a 16 MHz clock rate and takes advantage of an 80387 coprocessor

for math calculations. The Zenith contains a 360 kilobytes and 1.2 megabyte

23

flexible disk drives and an 80 megabyte internal hard disk. Internal memory

consists of four megabytes of RAM. For display purposes, the Zenith is

connected to a monochrome display and a Video Graphics Array (VGA) board and

color monitor.

HNC Support Software

A wide array of development and interface software is provided by HNC for

use with the ANZA Plus coprocessor. There are 17 predefined neural network

paradigms in what is known as the Neurosoft library. Neurosoft is specialized
ANS software which is designed specifically to run on the ANZA Plus board.

All networks in the Neurosoft library have been tested and documented by HNC

to decrease development time and risk. There are three levels of access

available to the user during ANS development on the ANZA Plus system. At the

highest level is a family of fully contained, rapid-prototyping tools called

NetSet and ExploreNet which allow the user to quickly create and test a

variety of networks using a "fill in the blanks" approach. ExploreNet is a

windows-based, rapid development environment. Earlier versions of this

product were utilized for some of BSED's initial ANS experiments. However, a

high-level environment like ExploreNet necessarily entails a number of user

restrictions. The ExploreNet system cannot be incorporated into user software

nor can it be modified by the user, limiting its use for advanced neural

network applications. The arrangement of the ANZA Plus hardware and software

components is shown in Figure 7. The ExploreNet products interface to the

rest of the system at the same level as the "user program" in the figure.

The next level of neural network interface software is known as the User

Interface Subroutine Library (UISL), which provides the user with flexibility

in accessing the Neurosoft paradigms. The UISL is a set of function calls

which are embedded directly into the user's C language modules. As can be

seen in Figure 7, the UISL is the central control routine for all network

programming with the ANZA Plus. Though it requires more in the way of

programming ability, the UISL provides the user with much more control over

the design and development of the network and enables the network to be linked

directly into the host software. Both the Lead Pursuit/Intercept system and

the ACM Expert System are implemented through the use of the User Interface

Subroutine Library. In these cases, the UISL has been used exclusively to

24


~~~~~~. ............ iii .!~~i~ ....! ii ii i
..~ !;;iii U S ....... ...........::i:i:i::::::::: i::i:]=ii:i!:'E R S FTMP )

.U S ER...... .. .. ...... ..... :;........

Figure 1. Arrangement of the ANZA Plus Hardware and Software components

access the Multilayer Back-Propagation Network package of the Neurosoft

Si brary.

The third level of interface capability allows the user to actually

create his own neural network paradigms (or modify existing paradigms) by

using a specialized network description language called AXON. With AXON, the

user can exactly define the internal structure and update equations of a

network which are then accessed from the host program via the UlI. Creating

neural network code with AXON is analogous to adding a customized paradigm to

the NeuroSoft library. BSED has used the AXON package to develop an enhanced

MBPN with internal feedback from the hidden layers. This architecture is

known as a recurrent network and is not available through the NeuroSoft

package.

BSED ANS Software

In addition to primary ACM Expert System code and the various ANS

experiments, various ANS software support tools for the design, development,

and validation of neural networks were also developed. All software developed

25



under this program was written using the C programming language (Microsoft C

Version 6.0). One of the fundamental tools created by BSED is a Neural

Network Training System which allows an MBPN network designer to create a

network for training or to continue the training of an existing network. The

user is prompted for the various network definition parameters listed in Table

1, and the network is instantiated accordingly on the coprocessor. The

training program then loads the specified training data into ANZA Plus memory

and begins processing of the network. During training, the user is provided

with a color display of the network structure, some of the training

parameters, and a dynamic picture of how training is progressing. Figure 8

shows a typical display screen from the Neural Network Training System.

Artificial Neural Network Training System

Iteration = 980526 LEARNING
MSE = S.12659

Output' MAE = 8.414884 any - Pause Training
Computed Desired c - Clear Gaphics Area

Output Size = 3 u - Display Update Rate
Output[8]: -8.213 -0.3?8 Hidden #2 Size =8 s - Single Step ode
utput[1]: -8.101 0.100 Input Size = 64 1 - Toggle Learning
Output[2]: -8.115 -0.238 I/0 Unconnected p Modify Parameters

Alpha 10.8 t - New Training Data
Beta 8.00 d -Neow Plot Type
Update = Batching i - Saue and Continue
Batch size = 258 ESC Saue and Exit

Output Delta Values

'"" " ."II,,,,,I
,li' "

Figure 8. Neural Network Training System with Delta Output ValuePlot Mode
Selected.

In Figure 8, the learning flag in the upper right corner indicates that

the network is in the training mode. The iteration counter in the upper left

corner indicates the number of training cycles that have been accumulated

since this training session began. In the center left box, the numerical form

26



of the network-computed and target output values is shown. At the top of the

center box are the Mean Squared and Absolute Error (MSE and MAE) values. In

the center of the screen are the primary network structure and training

parameter values. In this case, there are 64 input PEs, one layer of 8 hidden

PEs, and an output layer of 3 PEs. Note that the HNC MBPN paradigm numbers

the hidden layers in reverse order; therefore, the first hidden layer is

designated layer #2, the next, layer #1, and the last, layer #0. In this

example, since there is only one hidden layer, it is referred to as layer #2.

In this case, input layer is not connected directly to the output layer. The

learning rate, a, is set to 0.1, and the weights update mode is set to

"Batching" with a batch size of 250.

Artificial Neural Network Training Systea

Iteration = 988165 1 LEARNING
MSE = 8.12864?

Output MAE = 8.414778 any - Pause Training
Computed Desired c - Clear Graphics Area

Output Size =u - Display Update Rate
Output[8]: 8.375 8.180 Hidden #2 Size =8 s - Single Step ode
Output[1]: -9.146 -8.128 Input Size = 64 1 - Toggle Learning
Output[2]: 8.229 8.250 I/O Unconnected p Modify Pararaterg

Alpha 0.100 t - Ne Training Data
Ieta .88 d -New Plot Type
Update = Batching - Save and Continue
Batch size = 258 ESC - Saue and Exit

Output Layer Values

Figure 9. Neural Network Training System with Output Values Plot Selected.

At the bottom of the display screen is a window which provides a
graphical representation of the output values over the duration of network

training. The Neural Network Training System provides three plot modes for

the graphics window. In Figure 8, the "Output Delta Values" mode has been

selected. For each display update, a colored line is drawn between the

27



computed and target output value. The smaller the line, the closer the output

value is to the desired target value. Figure 9 shows a similar screen, except

that the "Output Values" plot mode is being used in the graphics area. This

mode generates colored points for each of the computed and desired output

values. In Figure 10, the "Error Values" plot mode has been used to display

the values for MSE and MAE over the duration of network training. In all but

the "Error Values" plot, the scale of the Y-axis in the graphics area

corresponds to the range of the activation values of the output PEs. In the

example shown, this is -1.0 at the bottom of the graphics area and +1.0 at the

top. The "Error Values" plot is scaled each time it is selected so that the

current maximum error value is the maximum Y value and the minimum Y value is

zero. The X-axis of the graphics area represents the number of iterations.

The display is updated every n iterations, where n is a user-selected value

between one and ten thousand. Depending on the number of iterations between

updates, the user can generate coarse or fine resolution displays in the

graphics window. In Figures 8 and 9, the update rate has been set to update

the display once every network iteration. In Figure 10, an update rate of one

every hundred network iterations has been selected.

In each of the display figures, the box at center right is a run-time

menu which provides the user with keyboard-selected options to clear the

graphics area, change the display update rate, initiate a single step mode,

turn learning on and off, modify the run-time training parameters, select a

new data file for training, save the current weight structure, and select the

desired output type for the graphics'area. Typing any key other than those

listed on the menu pauses the training process until another key is pressed.

When the training process is complete (or at any time the user so desires) the

training session may be terminated by hitting the escape key. At this point

a prompt appears which asks for the name under which to save the current

network weights and parameter definitions.

The network training system can be used in a "nontraining" mode to verify

the performance of a given network by examining the output delta values and

the network error displays. There are also optional file creation utilities

which will build a history of MSE over time or record the activation levels of

all PEs in the network for each display iteration. Network definition and

training parameters are divided into two categories: load-time and run-time.

28



Artificial Neural Network Training System

Iteration 975888 LEANIING
MSE : 8.128607

Output MAE 8 0.415141 any - Pause Training
Computed Desired c - Clear Graphic* Area

u - Display Update Rate
Outputl: 8.352 0.350 Hidden N2 Size = 8 s - Single Step Mode
Output[Il: 8.139 0.230 Input Size = 64 1- Toggle Learnig
Output[2]: 0.838 0.100 I/O Unconnected p Moify Parameters

Alpha 8.180 t - New Training Data
Beta .88 d- New Plot Type
Update = Batching w - Saue and Continue
Batch size = 256 ESC - Saue and Exit

Error Values

Figure 10. Neural Network Training System with Statistics Mode Selected.

Load-time parameters are defined before the network is instantiated and may

not be modified thereafter. A sample screen from the MBPN Training System for

entering load-time parameters is shown in Figure 11. The run-time parameters,

shown in Figure 12, may be modified by the user during the training process.

Modify Load-Time Constants

Output Layer Size [3] ?
Number of Hidden Layers [2] ? 1
Size of Hidden Layer #2 [10] ? 8
Input Layer Size [64] ?
Random Seed [17264] ? 12345
Initial Weight Max [1.00] ? 0.2
Wts Update Allowed: O-N, 1-B, 2-S, 3-S/B [3] ?
Connect Inputs: 1-TRUE, O-FALSE [0] ?
Function Class: O-LGS, I-TLIN, 2-GAUSS, 3-ATAN, 4-ATANH (0] ?
Steepness of Slope [1.00] ?
Upper Limit [1.00] ?
Lower Limit [-1.00] ?

Figure 11. Load-Time Constants Modification

29



Modify Run-Time Constants

Output Alpha [.1000] ?
Hidden Alpha #2 [.6000] ?
Wts Update Allowed - 3
Wts Update Actually Used: O-N, 1-B, 2-S, 3-S/B [0] ? 1
Batch Size [0] ? 250

Figure 12. Run-Time Constants Modification

Another tool used during the development of neural networks is the

Weights Analysis Utility. When a network has been trained and saved using the

Neural Network Training System, the training parameters and the current weight

values are stored in two disk files. These files can then be used to produce

a readable profile of the network's structure, training conditions, and

weights. The Weights Analysis Utility allows the user to quickly examine or

compare the details of any saved network. It provides a complete breakdown of

each weighted connection in each layer of the network.

PRELIMINARY NEURAL NETWORK EXPERIMENTS AND RESULTS

Introduction

To develop an in-depth understanding of neural network behavior and build

expertise in applying Artificial Neural Systems techniques to experts systems

issues, BSED adopted an evolutionary development approach. Such an approach

starts with individual elements of the full problem, scales them down to their

simplest form, and explores and builds upon these relatively simple

components. When the individual elements are understood in isolation, they

are recombined to create successively more complex systems which lead to the

working model. The fundamental elements of the ACM Expert System involve the

representation of changing angles, ranges, velocities, and the transformation

of these data into reasonable flight path commands. The following experiments

demonstrate how these elements might be handled in a neural network

representation and how the various individual elements may be combined. They

also point out many interesting details of how neural networks behave when

30



attempting to learn the kinds of mappings involved in the simulation of ACM

decision making.

The first set of experiments was the creation of a simple three-layer

network to determine the proximity an input angle to a fixed angle. This

series of experiments established the capability of neural networks to

successfully learn the mapping of non-monotonic functions as found in aircraft

angle geometry. Having examined the domain of angles, the next set of

experiments involved a network which provides slant range as output based upon

(X, Y) coordinate input data. The results of these two experiments were then

combined to create a simple Tactical Situation Classifier network. This

network takes antenna train angle (ATA), target aspect angle (TAA), and range

as input and produces two output values. One output indicates the level of

threat and, the other, the potential for kill under the current relative

geometry.

The next step in the evolution of the ACM Expert System was the

development of a network which simulates the behavior of a relatively simple

lead pursuit and target intercept maneuver algorithm. Building directly on

the experience gained from the earlier network experiments, the Lead

Pursuit/Intercept (LPI) demonstration provided a direct point of departure for

development of the ACM Expert System's neural network architecture.

Additionally, by allowing a direct, objective comparison of a neural network

and an algorithmic solution, much was learned about the generalization power

of neural network implementations. A full description and the results of the

Lead Pursuit/Intercept Simulation are presented later in this report. By

upgrading specific modules of the LPI system, the prototype ACM Expert System

was created. A diagram of how the ACM Neural Network has evolved is shown in

Figure 13.

31



a a ~I I P

ANGLE PROXIMITY LEARNING RANGE FROMRECOGNITION CARTESIAN POSITION

LEARNING TO SIMULATE LEARNING TO SIMULATE DETERMINING KILL POTENTIAL
ACM DECISION-MAKING THE BEHAVIOR OF A AND LEVEL OF THREAT

FROM HUMAN PERFORMANCE DATA LEAD PURSUIT/INTERCEPT FROM RANGE AND ANGLES
ALGORITHM

Figure 13. Evolution of the ACM Neural Network System.

Angle Proximity Calculator

The first series of experiments to be carried out on the ANZA Plus

coprocessor addressed the ability of simple back-propagation networks to

represent angle proximity relationships. Specifically, researchers were

interested to see how well an ANS system could represent the unnatural mapping

between angle values and processing element (PE) activation values. For

instance, if angles from 0 to 360 degrees are represented by PE activations

from 0.0 to 1.0, the network must learn that the angles of I and 359 degrees

are relatively proximate even though their respective PE activations are

maximally distant. This anomaly is diagrammed in Figure 14, where it can be

seen that pairs of angles with similar proximity values are not necessarily

represented by similar activation differences. The small angle between I and

359 degrees and between I and 3 degrees has a size of 2 degrees in both cases.

However, the difference of the activation levels for each pair of angles is

not the same. So how can activation levels be used to code for proximity?

This is an example of a problem where the association between input and output

32



data is not inherent in the data itself and must be represented by

abstractions within the neural network's hidden layer.

A theoretical neural network to solve this angle/proximity relationship

might consist of a single input PE which represents angles from 0 to 360

degrees, a single output unit which produces a proximity value between 0 and

1, and a hidden layer of optimal size (see Figure 15). In this case, the

network would be trained to associate input angles with their appropriate

proximity to 0 degrees, where an output of 0 would indicate the angle was
maximally distant from 0 degrees (180 degrees) and an output value of 1 would

signify maximal proximity to 0 degrees. Associated proximity values for each

angle in this configuration are given by the equation:

proximity = ABS(! - angle/180). (11)

00
3590-- 1.0

2700 900 1806- 0.5

0 (r0-.- 00

1800

ANGLE VALUES PE ACTIVATION
VALUES

PROX (I* 3590) - 2 A ACTIVATION (1-, 359) - 0.99

PROX (10, 30) - 2 A ACTIVATION (10. 3-) - 0.01

Figure 14. Mapping Angle Proximity Values to PE Activation Levels Presents a
Challenge in a Neural Network Representation

33



This mapping is potentially difficult for a neural network because the

monotonically increasing angle values are being mapped to nonmonotonic

proximity values.

Networks with the above structure were tested on the ANZA Plus system

using the NetSet (an early version of ExploreNet) development package. It was

determined that the presence of a single PE in the input and output layers

does not provide enough interconnections to create a stable network, and

therefore, the fidelity of the signals generated by each PE is limited. For

these reasons, an additional PE was added to the input and output layers, and

OUTPUT: PROXIMITY TO 0
SCALED TO (0 - 1)

HIDDEN LAYER

INPUT: ANGLE (0 - 360 1)
SCALED TO (0 - 1)

Figure 15. Theoretical Network Structure to Represent the Angle Proximity
Problem

the input and output values were encoded to be divided evenly between the two

units of each layer. For example, an experiment was carried out using the

network structure shown in Figure 16. In this experiment, called EXPDA, the

input angle is divided so that values less than 180 degrees are scaled between

0.0 and 1.0 and represented by input PE #1 while input PE #2 remains at zero.

34



Angles between 180 and 359 degrees drive input PE #1 to its maximum activation

level while the angle value is scaled between 0 and 1 and applied to input

unit #2. Similarly, proximity of the input angle to 0 degrees is represented

on the output layer by assigning values between 0 and 0.5 to output unit #1

and values between 0.5 and 1.0 to output unit #2. The EXPDA network contains

five units in the hidden layer.

PROXIMITY (0 -0.5) PROXIMITY (05 -1.0)

OUTPUT #1#2

HIDDEN 0000 0

INPUT #1#2

ANGLE (0- 179) ANGLE (1o - 3S)

Figure 16. Neural Network Structure for the EXPDA Angle Proximity Experiment.

Training of the EXPDA network was carried out using four sets of data.

The first set contains input angles and their corresponding output proximities

for angles at 45 degree intervals. Subsequent training data sets contain

finer angle intervals at 30, 15, and finally 1 degree spacings. Training

begins with the coarse data and proceeds to the finer data as the network

begins to learn the relationship between angle and proximity to 0 degrees. A

sigmoidal thresholding law was used, and the batching and momentum terms of

the back-propagation learning algorithms were disabled. Before training, the

35



interconnection weights were randomized using a weight initialization seed of

123 and a weight initialization range of ±0.5. The learning rate constant, a,

was set initially to 2.0 and decreased as training progressed to a final fine

tuning value of 0.1. At each stage of training, the weight adjustment process

was carried out for approximately 20,000 iterations. When the training

process was complete, the network's capability was tested using the 1 degree

data in a single production run. The results of the EXPDA experiment are

shown in Figures 17 and 18. Figure 18 shows the normalized output values

(scaled between 0 and 1) from the neural network for each output element.

These are the encoded values of output as they are represented on the

network's output layer. The outputs are plotted as a function input angle

from 0 to 360 degrees. Both the network-computed and the actual target data

for each output PE are displayed, resulting in four separate curves. Notice

that the network's output departs from the target data at very specific points

on the curves. In Figure 18, the unbroken curve is generated by decoding and

recombining the activity levels of the output layer PEs. This curve

represents the network-computed proximity values as a function of input angle.

The second curve, depicted by the broken line, represents the actual or target

proximity values as a function of angle.

As can be seen in Figures 17 and 18, the network was quite successful at

learning the angle proximity representation, though there is still a certain

amount of error in performance. Though further training may shave a bit more

error from the network's performance, much of the exhibited error is due to an

apparent inability of the learning process to faithfully track sudden changes

in the direction or magnitude of the training data. In Figure 17, the

directional changes can be seen as sharp points of inflection in the target

data. Output PE #1 has inflection points at 90, 180, and 270 degrees, while

PE #2 has inflection points at 0, 90, and 270 degrees. These inflection

points are due partly to the inherent structure of the problem, as shown in

Figure 19, and partly due to the way in which proximity values are divided

among the two output units. Experiment EXPDA also contains a discontinuity in

the data representation where the input values jump from 359 degrees back to

0 degrees.

36



C1 LEGEND
_~ / .m'

zi 
2 om

1 Tg

0 45 g0 135 180 225 270 315 360

Angle (degrees)

Figure 11. Output PE Activity Levels as a Function of Input Angle in the
EXPDA Network

- LEGEND

-- Target

-

E

0 45 90 135 180 225 270 315 380
Input Angle (degrees)

Figure 18. Proximity Value Output as a Function of Input Angle in the EXPDA

Network

37



CHIANGE OF MAGN6TUDE FOR ANGLE

0

ANGLE INCREASES, AGEICESS
PROXIMITY INCREASES PROXIMITY DECREASES

ANGLE INCREASES.,1AGEICESS
PROXIMITY INCREASES 1PO(~T ERAE

t
CHANJGE OF DIRECTION FOR PROXIMITY

Figure 19. Points of Inflection in the Representation of Angles and
Proximities to Zero Degrees in the EXPDA Experiment.

38



A similar experiment, called EXP2, was conducted with a different

representation of angle at the input layer and a new target proximity of +90

degrees, rather than the zero degree target of EXPDA. For the input, instead

of dividing a 0 to 360 degree angle among the two units, PE #2 coded for
angles between 0 and 180 degrees while PE #1 indicated positive (1.0

activation level) or negative (0.0 activation level) angle values depending on
whether the angle was on the right or left side of the circle. This

arrangement circumvents the change in magnitude problem of the 0 to 360 case,

but increases the number of inflection points (one at each quadrant) as can be
seen in Figure 20. The network connection structure of the EXP2 experiment is

identical to that of the EXPDA structure.

ANGLE DECREASES, ANGLE INCREASES.
PROXIMI Y INCREASES 0 PROXMITY INCREASES

0 +90

ANGLE DECREASES,ANGEIC AS.
PROXIM ITYDECR EASES ±180PROxIY DECREASES

t

Figure 20. Points of Inflection in the Representation of Angles and
Proximities to +90 Degrees in the EXP2 Experiment.

Using the same training procedure and initial conditions as were used in
the EXPDA experiment, the EXP2 network produced very similar performance
results. The computed and target values of the network's output units are
graphed together in Figure 21. The actual proximity versus angle data for the

39



same set of one-degree sample data is shown in Figure 22. To get a numerical

comparison of mapping accuracy, the target and computed output values for the

EXP2 and EXPDA experiments were subjected to an absolute error test using the

following equation:

360
absolute error = I abs(tgt - compi) (12)

i

where tgt, is the target proximity output desired for a given input angle, i,

and comp, is the network-computed proximity value for the same input angle.

When the average absolute errors in proximity output for EXP2 and EXPDA are

compared, it is evident that both networks were capable of achieving close to

the same results through quite different representations of input angle. The

EXPDA network has an average absolute error of 0.026 over 360 one-degree

samples, while the EXP2 network produced an average absolute error of 0.017

over the same range. This seems to indicate that the back-propagation

learning process is capable of overcoming various kinds and numbers of

discontinuities or inflection points in mapping from input to output data.

LEGEND
-# CaMP
#2 Comp

I Tgt
2 j•Tgt

,...

iII

-180 -135 -90 -45 0 +45 +90 +135 +180
Angle (degrees)

Figure 21. Output PE Activity Levels as a Function of Input Angle in the EXP2

Experiment.

40



" LEGENI
-Computed
--- Target

-180 -135 -90 -45 0 +45 +;G + 1,3r I'm8
Input Angle (degrees)

Figure 22. Proximity Value Output as a Function of Input Angle in the EXP2
Experiment.

Though the average error rate for the networks is relatively low, the

error is not evenly distributed along the entire range of data. The computed

data diverges at certain points while matching perfectly at others. As

mentioned before, the inflection points in the target data seem to be

influencing the network's inability to perfectly track the target data. In an

effort to determine whether the sequential nature of the training data

presentation has an influence on the final network performance, a third

experiment, called EXPR, was devised to recreate EXP2 with nonsequential

training data. It was assumed that training took on a certain character due

to the fact that, in certain sequences of sequential data, the weight changes

for anglen+1 are not much different from the changes for angle n. However, when

the data reaches a point of inflection, like the edge of a quadrant in EXP2,

the weight changes must alter their direction and thus, the computed data

temporarily depart from the target data. To test the influence of these

monotonic training data sequences, the 45, 30, 15, and I degree training data,

which associate angles to target proximities, were randomized in terms of

41

. . .... .. .......... .... ....... .. ......... .. .. ...... . .. .. . .. ..



their order of presentation to the developing network. The results of the

EXPR test are shown in Figures 23 and 24.

LEGEND
Comp
1Tgt
2Tgt

CS'
Ed#

-180 -135 -90 -45 0 +45 +90 +135 +180

Angle (degrees)

Figure 23. Output PE Activity Levels as a Function of Input Angle in the EXPR
Experiment.

Graphically, there seems to be little difference between the performance

of the sequentially trained EXP2 network and the randomly trained EXPR network

over the 360 degrees of test data, and indeed, the average absolute error

between target and computed proximity values for EXPR is 0.019, essentially

the same as the sequential case. This indicates that, at least for this

problem, the role of data presentation sequence in the training of basic back-

propagation networks is not significant to the final weight structure of the

network.

The primary conclusion to be drawn from these simple excursions is that

the representation of a single data value with more than a single processing

element should be avoided since the resultant introduction of inflection

points caused by this representation produces difficulties in the neural

network learning process. Certain data may require some division of their

42



external representation among more than one PE, but as long as the data is

continuous and monotonic, it should be represented by a single PE to maintain

its continuous and monotonic nature. If a given neural network requires that

the accuracy of its input and output elements be increased, the number of

hidden units must be increased, not the number of input or output units. In

the previous experiments, the number of input and output elements was

increased to overcome the inherent instability of very small networks, but

this is not an issue when the representations are scaled up to model more

complex problems requiring a greater number of input and output PEs.

LEGEND
' Computed

I,_ - - Target

C=

E/

"L.

c.'!

IIII I I I

-1a0 -135 -;0 -45 0 +45 +90 +135 +180
Input Angle (degrees)

Figure 24. Proximity Value Output as a Function of Input Angle in the EXPR
Experiment.

A general result of the Angle Proximity experiments is that neural

networks of this type are able to generalize quite easily. For example, if

the network in the EXP2 case is trained exclusively on the 30-degree training

data, it will eventually learn to provide accurate proximity results with an

average absolute error of around 0.007 when tested with the same 30-degree

data. When this network is then tested with the 1-degree data set, it also

provides reasonable proximity output for those angle val'ues upon which it was

not trained. The average absolute error for a network so trained is 0.030 for

43



360 one-degree data samples. This compares favorably with the error rate of

0.017 produced by the EXP2 network which had the benefit of being exposed to

the 1-degree data during training. The network which has seen only 30-degree

data during training learns to generalize its responses to provide approximate

output values for input angles which fall between the angles it has been

trained on.

The concept of a solution space is quite easy to visualize in the Angle

Proximity networks. It is clearly represented by the broken lines in Figures

18, 22, and 24. Since the solution space is simply a two-dimensional map that

relates a single angle value with a single proximity value, it becomes a

trivial procedure to select a uniform distribution of training samples which

span the entire space. This is precisely what was done in generating the

training files for the EXP2 and similar experiments. The only question for

the network designer is what resolution to use; in this case the finest

samples were made up of one-degree increments, but even 30-degree samples

provided a good mapping for network training because the data was uniformly

distributed across the entire space. In later experiments, including the ACM

Expert System, where the input and output representations are more complex,

the exact nature of the solution space is much more difficult to define.

The mechanics of "training out" the error in a given network are

dependent, in part, on the learning rate, the length of training, and the type

of learning equations used during the back-propagation process. In general,

the network will learn a rough approximation of the desired mapping rather

quickly, but the reduction of mean squared error (MSE) is an asymptotic

procedure which may require many iterations to reap a relatively small

increase in network performance, see Figure 6.

Range From Cartesian Coordinates

The second set of neural network experiments is similar to the Angle

Proximity tests, but in this case, a neural network was created to map

cartesian points to a slant range value from a fixed point. Given a 100x1O0

mile grid with a fixed point at position (50,50), the network is to determine

slant ranges from the fixed point to various points in the grid. The network

structure used to accomplish this task is shown in Figure 25. The input units

44



@ i! i . .:•"- .. • . • " -'. ..... . .

represent the x and y coordinates between 0 and 100 miles, and the output

units represent the range to (x,y) from (50,50). All values are normalized to

a 0 to 1 scale, and the range value is divided between the two output PEs, as

was done with proximity values in the previous experiments. The training data

were generated by randomly selecting x. and y. values and calculating range

with the equation:

range - sqrt (x2 - x1)2 + (Y2 _ yl)2  (13)

where (xl,Y 1) is the point (50,50). The range network was trained using the

same parameters as were used in the Angle Proximity networks.

RANGE (0 -OS) RANGE (0.5 -1.0)

OUTPUT 

XX

HIDDEN10 0 0 0 0

INPUT

X (0 -100) Y(0-100)
Noranlafod (0 -1) Nomakod 1 (0- 1)

Figure 25. Neural Network Structure to Map Cartesian Coordinates to Range
Values.

After training, the level of network performance was found to be similar

to that obtained in the previous experiments. Performance was tested by

creating a data set based on a series of points which lie on the diagonal from

(0,0) to (100,100). The network-computed and target activation levels of the

output units for the test data are shown in Figure 26. The actual range

45



versus position data (network-computed and target) are plotted in Figure 27.

Points of inflection in the input and output data for the range experiment are

evident in the network's uneven mapping between computed and target data. As

can be seen in Figure 26, the point of greatest deviation from the target data

occurs closest to the fixed point, (50,50). This points out a deficiency in

the representation of range. To generate a high-fidelity representation of

range from the minimum to maximum range values, a neural network may require

two range input PEs, one for coarse representation and one that is sensitive

LEGEND

2 Comp
• ' ' Tgt

- 2 Tgt

°0 '0 20 3 0 5 0 7 o 9 0

F 2. ,p eo
S '. I

I I I I I I I I I I
0 10 20 0 40 50 80 70 80 90 100Input Postion (X,Y) (X=Y)

Figure 26. Output PE Activity Levels as a Function of Input Coordinates along

the Diagonal from (0,0) in the Range from Coordinates Experiment.

only to close ranges. The average error over the 100 random test data points,

and for the diagonal test data, is 1.47 miles for the trained range network.

46



" LEGEND
Computed

. . -- Target

U7.

,/ S

E

I I I I " ' I I I I I

0 10 20 30 40 50 60 70 80 90 100

Input Postion (X,Y) (X=Y)

Figure 27. Range Output Values as a Function of Input Coordinates along the

Diagonal from (0,0) in the Range from Coordinates Experiment.

Tactical Situation Classifier

An obvious next step in the evolution of the ACM Expert System would be

to combine the network performance for representing angle and range

relationships into a single network. This is precisely what the Tactical

Situation Classifier (TSC) Network was designed to do. The TSC neural network

takes antenna train angle (ATA), target aspect angle (TAA), and range to

target as inputs and produces a value between 0 and 100 (100 being maximum)

for both level of threat, (L,), and potential for kill, (Pk), under the current

"tactical situation". The training of this network was based on two simple

functions of angles and distance which produce the level of threat and

potential for kill values. The form of the functions used to generate the

training file are shown below:

Lt M f( Range, ATA, TAA ) (14)

where Lt is inversely proportional to Range and TAA, and proportional to ATA.

47



Pk = g( Range, ATA, TM ) (15)

where Pk is inversely proportional to Range and ATA, and proportional to TM.

Whether the equations are entirely valid is not as significant as that
they are consistent in the output values they generate. A random set of 500
input conditions were used to create the network training file. Random
sampling was used in an effort to get a uniform distribution of training
samples across the comparatively larger-solution space. The input and output
values were scaled between 0 and 1 before presentation to the network. Figure
28 shows the TSC network structure. After about 20,000 iterations, requiring
less than 30 seconds of training time, the network exhibited excellent
performance on a random set of test data, producing an MSE of 0.0003 over the
entire test set. The TSC experiment clearly shows that a neural network is
capable of learning a mapping for the combined elements of the ACM domain and
is able to generalize its solution from a limited set of examples. It also
demonstrates that such a mapping can be accomplished very quickly for
relatively simple networks.

LEVEL OF THREAT (0- 100) POTEN11AL FOR KILL
(0 - 100)

SLANT ATA TAA
RANGE (0. 130) (0. 1- )
(0 - 50)

Figure 28. Neural Network Structure used to Represent the Tactical Situation
Classifier.

48



Lead Pursuit/Intercept Simulation

After establishing that neural network representations were capable of

handling the simple angle and range relationships of the previous experiments,

the next step was to combine all the underlying elements of the problem into

a single neural network which could operate on flight profile and maneuver

data. This was intended to serve as a scaled-down prototype of the ACM Expert

System. The goal was to design and implement a neural network which could

simulate the behavior of a simple flight path generator. Though this network

system would not be based on human performance data, and would involve only a

simple, restricted set of maneuvers, it would provide a relevant domain within

which to create a working model of an ACM neural network development

environment. The major difference between the Lead Pursuit/Intercept (LPI)

system and the ACM Expert System is that the LPI demonstration is based on

flight data generated by an algorithm while the ACM neural network will be

trained on actual pilot performance data. Despite this difference, the LPI

system serves as a logical point of departure toward the target system for the

following reasons. First, it provides an operational testbed for the

development and validation of the various software components that are

required for the ACM Expert System. By using a relatively simple maneuver

profile for the problem domain, the individual software modules could be

validated and integrated in a scaled-down and workable environment, but still

be exercised using data that is similar in form to the expected ACM data. The

use of maneuver data generated by an algorithm allowed neural networks to be

trained with data that is consistent, easily generated, and quickly validated.

Furthermore, the LPI software modules were designed specifically to be

upgraded into the actual components of the ACM Expert System software.

Finally, it was desirable to create an interim system which would provide a

visual presentation of the ANS solution process for demonstration purposes.

The LPI demonstration met all of these requirements and served as a major

evolution toward the development of the ACM Expert System.

The first step was to put together an algorithm which would successfully

fly a lead pursuit profile followed by an intercept maneuver for any initial

relative geometry of two aircraft. The basic operating parameters of this

algorithm are outlined in Figure 29. The algorithm was then used to generate

time history data of various flight profiles which could serve as training

49



* START FROM ANY INITIAL CONDITIONS
(ATA, TAA, RNG AND VELOCITY)

4e MANEUVER THROUGH 2-0 AIRSPACE
USING A LEAD PURSUIT TRAJECTORY

\ p COMPLETE MANEUVER SEQUENCE BY
MATCHING POSITION. DIRECTION, AND

PLAYER VELOCITY OF TARGET
TARGET

Figure 29. The Basic Operating Parameters of the Lead Pursuit/Intercept
Algorithm.

data for a neural network. If successful, the neural network would learn by

example to accomplish the lead pursuit and intercept procedure without knowing

anything about how the algorithm worked. The network was expected to

duplicate the performance of the algorithm simply by being exposed to examples

of algorithm's behavior. The framework for this experiment was to be a

demonstration system which plotted the algorithm-generated and network-

generated flight profiles simultaneously so that their relative performance

could be easily compared. The key element of this test would be the neural

network's ability to create a generalized mapping of input to output since

only a very small subset of all possible conditions would be used for
training. An overview of the LPI neural network simulation process is shown

in Figure 30.

Description of the Algorithm

The Lead Pursuit/Intercept Algorithm is actually comprised of two

separate algorithms. The Lead Pursuit algorithm controls the flight path

until the pursuer is close and behind the target. At that point, the

50



Intercept algorithm matches the target's location and airspeed to within a

specified tolerance. For the LPI ANS demonstration, the tolerances require

that the pursuer be within 30 meters of the target with less than 10 meters

per second (m/s) of velocity difference for a successful intercept and

termination of the profile. Acceleration commands to maneuver the pursuit

aircraft are generated based on the current relative geometry of the two

aircraft at an update rate of one per second.

TIATA NM

/1 179 14-0 2 160 13
3

DATABASE GENERATION
ALGOSITHWIC TRAJECTORY

GENERATION

RT PATH CONTOL

F-r 00 00

000001

\//A//

NEWMPROMNERELATES

IMULATES ALOIITHM NEURAL NETWORK TRAING

Figure 30. The Lead Pursuit/Intercept Neural Network Development Process.

The general flow of control in the LPI algorithm can be seen in Figure

31. The target and pursuer aircraft are assigned initial values for position,

orientation, and airspeed. In general, separations of 3000 to 5000 meters and

common velocities were used for initial conditions. Based on the relative

geometry defined by these initial conditions, the algorithm operates on the

current state vectors to compute acceleration commands along the axial and

lateral body axes of the pursuing aircraft. These commands are limited to six

g's laterally and two g's axially. During Lead Pursuit, the pursuer attempts

to achieve an overtake velocity equal to 1.4 times the target's velocity in an

51



STATE VECTOR

POSITIONS, LEAD PURSUIT/
VELOCITIESI INTERCEPTELATIVES ALGORITHM

RELATIVE

GEOMETRY

COMMANDED
ACCELERATIONS

RIGHT.
AXIAL

FLIGHT PATH
UPDATE

Figure 31. Flow of Control in the Lead Pursuit/Intercept Algorithm.

effort to close range. The acceleration commands, along with the current
state vector are then sent to a flight path update routine which computes the

new position, orientation, and airspeed of the aircraft and updates the state

vectors. The target aircraft maintains a constant heading and airspeed unless

acceleration commands are entered from the keyboard during run-time. At this

point, the new positions of each aircraft are plotted, the input and output

data are written to the network training file, and the cycle begins again. A

set of complete flight paths for several starting conditions is shown as a

two-dimensional plot in Figure 32.

52



Intercept points

I * *

I 'S

,'~ I iiiltrget ". positions
,'; position .,

S S

Figure 32. Sample Lead Pursuit/ Intercept Profiles against a Nonmaneuvering
Target. -

Reporesenaton

To reproduce the behavior of the LPI algorithms using a neural network,

a representation of the pertinent input and output parameters had to be

developed. The relative geometry parameters become the inputs to the neural
network, and the corresponding commanded accelerations are the outputs. As

can be seen in Figure 33, the input layer of the network consists of

processing elements which represent antenna- trai n-angl e (ATA), target-aspect-

angle (TAA), range between aircraft, closing velocity (Vc), and direction-

independent velocity difference (AV). The final PEtis a flag to indicate
whether the Lead Pursuit or the Intercept phase is currently being used to

generate output. On the output layer, the network simply generates the same
output as the algorithm, namely, lateral acceleration and axial acceleration.

ATA and TAA take on values from +180 to -180 degrees. Range varies from 0 to
a00 meters, Vr between 300 m/s, and V between t90 m/s. Before presentation

53

indpndn vlctdiffrne(V. TefnlP safa oIdct



to the network, all values are scaled between -1.0 and +1.0 to correspond to

the proper PE activation range.

ACCIat ACCaXI

OUTPUT LAYER

Q Q Q Q 00 0 HIDDEN LAYER

INPUT LAYER

ATA TAA RNG VC  AV Phase

Figure 33. Network Structure of the Lead Pursuit/Intercept Demonstration

System.

Generating Trainina Data

As has been discussed in the Neural Network Training Section and earlier

in this section, training data must be selected in such a way as to constitute

a uniformly distributed sample of input/output associations over the entire

solution space. To approximate such a distribution, the network training file

for the LPI demonstration was generated by selecting various initial

conditions at regular intervals along each input variable's domain. For

example, flight profiles were generated for starting angles of 45 to 315
degrees off the target's nose, incrementing by 45-degree intervals for each

new profile. For each of these angles, the pursuer begins the flight profile

with ATA values of 0, 90, 180, and 270 degrees relative to the target.

Initial velocity and range values may be similarly sampled to produce a

relatively distributed set of input conditions. The algorithm is then allowed

54



to iterate between 10 and 25 times for each set of initial conditions,

creating a set of flight path fragments. Table 2 is a sample of the LPI

neural network training set. The column headings in the table, reading from

left to right, represent time, antenna train angle and target aspect angle

relative to the pursuing aircraft, distance between the aircraft, closing

velocity, absolute velocity magnitude difference, phase, and the outputs,

lateral acceleration and axial acceleration.

Since only short fragments are used in the training file, some conditions

must be generated where the initial range is small enough to ensure that the

intercept phase occurs. In fact, since the intercept phase would naturally

consist of far fewer data samples than the lead pursuit phase, extra samples

of the intercept phase were presented to the network to balance out the
preponderance of lead pursuit examples. In this way, the network learns how

to accomplish the goals of each phase with equal effectiveness. When the LPI

training file was constructed as described above, it contained approximately

1400 input/output associations similar to those shown in Table 2, which
adequately spanned the entire solution space. Clearly, this is a very limited

training set when it is considered that the entire range of possible starting

conditions for a given flight profile is something on the order of 1013, even

if only whole number values are used.

55



Table 2. Sample Section of the Lead Pursuit/Intercept Training Data File

TIM ATA TAA RNG VC OV PHS RAC AAC
0 0.0 45.0 5000.0 -170.7 0.0 1 52.95 19.61
1 -27.1 45.5 4823.9 -176.5 19.6 1 7.41 19.61
2 -30.3 45.6 4640.4 -190.2 39.2 1 1.09 0.00
3 -30.7 45.7 4450.5 -189.6 39.2 1 0.04 0.00
4 -30.7 45.7 4260.9 -189.6 39.2 1 0.02 0.00
5 -30.7 45.7 4071.3 -189.6 39.2 1 0.02 0.00
6 -30.7 45.7 3881.7 -189.6 39.2 1 0.02 0.00
7 -30.7 45.7 3692.2 -189.6 39.2 1 0.02 0.00
8 -30.7 45.7 3502.6 -189.5 39.2 1 0.03 0.00
9 -30.7 45.7 3313.1 -189.5 39.2 1 0.03 0.00

10 -30.7 45.7 3123.6 -189.5 39.2 1 0.03 0.00
0 0.0 90.0 5000.0 -100.0 0.0 1 58.84 19.61
1 -29.9 90.8 4895.9 -102.3 19.6 1 32.80 19.61
2 -44.1 91.1 4794.5 -98.0 39.2 1 3.52 0.00
3 -45.6 91.1 4697.7 -95.5 39.2 1 0.05 0.00
4 -45.6 91.1 4602.2 -95.5 39.2 1 0.02 0.00
5 -45.6 91.1 4506.7 -95.5 39.2 1 0.02 0.00
6 -45.6 91.1 4411.2 -95.5 39.2 1 0.02 0.00
7 -45.6 91.1 4315.7 -95.5 39.2. 1 0.02 0.00
8 -45.6 91.2 4220.3 -95.5 39.2 1 0.02 0.00
9 -45.6 91.2 4124.8 -95.4 39.2 1 0.02 0.00

10 -45.6 91.2 4029.4 -95.4 39.2 1 0.02 0.00
0 0.0 135.0 5000.0 -29.3 0.0 1 52.95 19.61
1 -21.1 135.5 4965.3 -35.1 19.6 1 6.10 19.61
2 -29.7 135.6 4922.9 -49.5 39.2 1 0.64 0.00
3 -30.0 135.6 4873.6 -49.1 39.2 1 0.01 0.00
4 -30.0 135.6 4824.5 -49.1 39.2 1 0.00 0.00
5 -30.0 135.6 4775.3 -49.1 39.2 1 0.00 0.00
6 -30.0 135.6 4726.2 -49.1 39.2 1 0.00 0.00
1 -30.0 135.6 4677.1 -49.1 39.2 1 0.00 0.00
8 -30.0 135.6 4627.9 -49.1 39.2 1 0.00 0.00
9 -30.0 135.7 4578.8 -49.1 39.2 1 0.00 0.00

10 -29.9 135.7 4529.7 -49.1 39.2 1 0.00 0.00
0 0.0 180.0 5000.0 0.0 0.0 1 -0.02 19.61
1 0.0 180.0 4990.2 -19.6 19.6 1 0.00 19.61
2 0.0 180.0 4960.8 -39.2 39.2 1 0.00 0.00
3 0.0 180.0 4921.5 -39.2 39.2 1 0.00 0.00

56



Training the Network

Training of the LPI network was accomplished through the use of the

Neural Network Training System. The primary measure of effectiveness (MOE)

during training was the minimization of MSE for the training set. The results

of the networks were also tested against the performance of the algorithm for

a broader comparison, as will be explained. A wide variety of network

structures and training parameters were used to generate LPI networks which

were scored using the above MOEs.

Though the size of the input and output layers was fixed by the data

representation, both the number of hidden layers and the number of PEs in

these layers was varied to determine the optimal structure. Many of the

attempted internal structures were capable of forming a stable mapping, but

the best overall structure consisted of a single hidden layer of 15 processing

elements, with the output layer also receiving direct connections from the

input layer. The resulting network consists of 23 PEs and 132

interconnections (excluding the 17 bias weights). Experiments with the

training parameters yielded an optimal initial weight range value of ±1.8, a

learning rate (e) value of 0.15, and a momentum or smoothing term (B) of zero.

A logistics activation function was used with a steepness value of 1.3.

Training was carried out for 300,000 iterations, or approximately 200 passes

through the training data set. The definition and resulting weight structure

of the network created under this training process is shown in Appendix A.

Using this set of weights, any set of six input values will result in a state

change at the output layer which corresponds to the network's approximation

for the appropriate acceleration commands to generate the intercept profile.

Comaring Algorithm and Network Performance

To validate the network's approximations of the LPI behavior, a flight

profile, not just the specific acceleration values for the individual time

steps, must be generated. By simultaneously plotting the flight profiles

generated by the algorithm and the network, a visual examination provides the

best analysis of relative performance. The time required to accomplish the

intercept maneuver is also a good performance indicator, provided the network

does not erroneously exceed the specified overtake velocity. To facilitate

this comparison process, the Lead Pursuit/Intercept demonstration program was

57



created A typical output display from the demonstration program is shown in

Figure 34.

As can be seen in the figure, the display presents numerical position,

orientation, and velocity data for one target aircraft and two pursuers. As

the demonstration runs, the positions of the aircraft are also plotted, each

in a different color, so that the evolving flight profiles can be compared.

The target aircraft flies a due north, constant velocity profile, while the

flight profiles of the pursuit aircraft are controlled by lateral and axial

acceleration commands; one of the pursuit aircraft is controlled by the

algorithm and the other receives its commands from the output layer of the

neural network. The two pursuit aircraft begin the demonstration at exactly

the same point, but the two controlling processes are completely independent,

so the state vectors of the two aircraft may depart substantially with

subsequent flight path updates. This can be seen in the plot of Figure 34,

which is the r3sult of an undertrained network (10,000 iterations). Figure 35

is a flow chart of the LPI demonstration, showing how control is passed among

the various program modules.

Lead-Puruit/Intercept Neural Network Saste.: Profile 32
Tim =79.0 ESC to exit, CTRL-Q to quit proile

/ Target
HDG: 9.1
ALT: 5688.8
VEL: 138.8

Netuork Algoritm
ATA: 54.1 -151.8

, TM: -9.1 29.5
In": 89.1 5.5

ALT: 588.6 5668.6
VEL: 121.4 97.6

. TIN: 78.0 7.6

&

Figure 34. Sample Display Screen from the Lead Pursuit/Intercept Neural

Network Demonstration.

58



-- WNEURAL NETWORK

dserrw approome
accewmo PLOT NEW

SET INITIAL commands FLIGHT PATH | PORITIONS

CONDITIONS UPDATE

Fg Fo ofont n. t aedP neo

1__W ALGORITHM

When using an optimally trained network to fly against a non-maneuvering

target, the network displays a remarkably similar behavior to that of the

algorithm, Figure 36. In most cases, the two pursuit profiles lie directly on

top of one another from the initial position until intercept. There is often

a slight difference in the number of time cycles required for the pursuit

aircraft to accomplish the intercept maneuver, with the network being slightly

slower than the algorithm. In every case, however, the neural network is able

to achieve the intercept goal and does so in much the same manner as the

algorithm. The precise simulation of the algorithm by the network proved to

be a somewhat surprising result, particularly since the network was trained on

such a sparse sampling of the algorithm's solution space. Further

experimentation with the system turned up even more interesting results.

59



Lead-Pursuit/Intercept Neural Network System: Profile 11

Time 29.0 Intercepted - Hit (EITER] to continue I Netork: 208k

Target
- HDG: 8.0

ALT: 580.0
UEL: 188.8

Network Algorithm
ATA: 15?.5 187.5
TA: -39.3 -72.8
N. G: 23.7 38.6

ALT: 5888.8 50o0.8
UEL: 92.1 94.2

TIM: 29.0 29.0

Figure 36. Lead Pursuit/Intercept Demonstration - Nonmaneuvering Target.

The LPI demonstration software allows the user to inject acceleration

commands into the target aircraft during run time, either via the arrow keys

of the keyboard or by "flying" the target aircraft with a joystick or mouse.

This creates a maneuvering target which can fly into a variety of unusual

relative geometries not included in the network's training set. Even though

the network was not trained under these conditions, it will still respond to

any input conditions, generating its closest approximation to output based on

the mapping that resulted from exposure to the training set. For example, if

the user increases the target velocity well above the velocity ranges used in

training, the network responds correctly by increasing its own velocity until

the proper overtake velocity is reached. A corresponding reduction in

velocity is produced when the target aircraft is slowed down by the user. In

these cases, it can be seen that the network has developed a meta-level

concept to code for overtake velocity based only on the relative velocity

information contained in the training set, Figure 37.

60



Lead-Pursuit/Jtercept Neural Network System: Prof ile #5

line = 43.8 Intercepted - Hit [UITERI to continue I Network: der.

Target
HDG: 89.7
ALT: 5000.0
UEL: 115.0

Network Algoritm
ATA: 125.6 6.6
TAA: -55.5 -169.3

"-ING: 11.2 7.8
ALT: 5888.8 5888.8
UEL: 116.5 119.6

".TIN: 43.8 43.0

Figure 37. Lead Pursuit/Intercept Demonstration - Maneuvering Target.

Not only can the network respond to extreme examples of typical training

cases, it can also produce successful responses to completely novel geometry

conditions. In fact, under certain conditions when the target aircraft is

maneuvering, the network will produce a much more direct flight path to

intercept than the algorithm, Figure 38. This is possible due to a number of

factors. First, note that the algorithm does not always perform what appears

to be the optimal flight path to accomplish the LPI goal. Certain geometries

cause the algorithm's equations to break down temporarily, generating errant

acceleration commands which perturb the overall flight path. Since these

cases are relatively isolated, the equations were not altered, and conditions

that were known to cause a failure of the algorithm were not used in the

generation of training data. Hence, the neural network knows nothing about

this poor performance of the algorithms since it was only exposed to "good"

data. Another factor is that the network has arrived at a broad

generalization to the LPI mapping based on its exposure to the limited but

well-distributed training set. When presented with novel conditions, this

generalization provides an approximate response which is an interpolation of

61



Lead-Purouit/Intercept Neural Network Syset: Profile 87

lime -25.89 Intercepted - Hit ITERI] to continue Network: 380k

Target
HDG: 8.0
ALT: 589M.@
UEL: M.8

Network Algorithm
ATA: 111.1 157.1
TAA: -72.3 -17.7

. , ING: 23.4 2299.2
ALT: 5908.8 5809.9
UEL: 108.2 139.2
TIN: 25.8 25.8

Figure 38. Lead Pursuit/Intercept Demonstration - Direct Path.

conditions it has been trained upon. In this way the neural network is able

to outperform its teacher because of the algorithm's inflexibility and the

network's ability to generalize a reasonable response.

Scaling Up to the ACM Expert System

The Lead Pursuit/Intercept demonstration system has met or exceeded all

of its design goals: providing insight into how neural networks behave,

verifying that an ANS representation fits well with the kinds of data required

to model the ACM regime, and resulting in a wealth of validated software to be

used in the development of the ACM Expert System. There is a direct mapping

between the various modules of the LPI software and the requirements of the

ACM Expert System. For instance, the same MBPN Neural Network Training System

is used to train ACM networks using Simulator for Air-to-Air Combat (SAAC)

performance data as is used to produce the LPI networks. Also, the ANS

support tools developed and used in the previous experiments are carried over

62



to the later phases of the program with no modifications. Instead of using

flight data from the LPI algorithms, real pilot performance data forms the

basis of the ACM Expert System's training set, and the network structure and

representation described below replaces the LPI network. To provide the

system with accurate aerodynamics for flight path update, the Blue Max II

flight profile generator replaces the simple update software used in the LPI

system. The bulk of the control code to interface with the ANZA Plus and the

User Interface Subroutine Library is carried over with only minor

modifications.

ARTIFICIAL NEURAL SYSTEM FOR THE REPRESENTATION AND

COLLECTION OF ACM DECISION-MAKING EXPERTISE

Introduction to ARCADE

Based on the success of the Lead Pursuit/Intercept Demonstration system,

a prototype neural network-based ACM Expert System, ARCADE, was developed.

ARCADE is an acronym for Artificial neural system for the Representation and

Collection of Air combat maneuvering Decision making Expertise. The first

step in creating ARCADE was to define an appropriate representation scheme for

the neural network's input and output vectors. This representation was based

on the appropriateness and availability of training data, and on the

requirement to drive a specific aircraft profile generation model. After a

satisfactory representation had been developed, a data transfer process was

set up to gather ACM performance data from the SAAC to be used for neural

network training. The data was then preprocessed into the proper format.

Various network structures were constructed and trained using the chosen

representation. The performance of these networks was validated using a

variety of objective and subjective means. Successful neural networks have

been incorporated into ARCADE, an interactive, computer-based simulation which

allows two aircraft to fly air combat against one another. Usually, one

aircraft is controlled by a human user while the other is controlled by an

ARCADE network; however, it is possible for both of the aircraft in ARCADE to

be controlled by neural networks. This feature, in effect, allows for fly-

offs to be held between two ARCADE network-controlled aircraft. The flight

profiles of each aircraft are presented via the two-dimension, three-view

display of ARCADE, Figure 39.

63



ARCADE Neural Network System

Time: 112.5 ESC to exit Netbork: vr6466
N

Ounsh ip Adversary
HDG: 37.8 / 23.9 209.3 / 193.9
PCH: -25.? / -23.1 25.7 / 23.1
UEL: 394.7 / 382.3 334.6 / 349.4
AHI: a / 8 0/ 0

UU

U

Figure 39. ARCADE Display.

The internal architecture and the flow of control of ARCADE can be seen

in Figures 40 and 41, respectively. The initial conditions (aircraft heading,

pitch, velocity, etc.) of the user and network aircraft are read from a user-

defined file. See Figure 42 for an example of the aircraft initial conditions

file. During ARCADE execution, the user controls the ownship by adjusting the

aircraft's commanded heading, pitch and velocity via the computer keyboard

keypad. The heading is adjusted with the left/right arrow keys and the pitch

angle is modified with the up/down arrow keys. The velocity is

increased/decreased with the plus/minus keys. The adversary aircraft is

controlled via an ARCADE neural network. Given the current tactical

situation, the ARCADE network provides the adversary aircraft with heading,

pitch and velocity commands. The flight commands for both the user and

network aircraft are then passed to the flight path generator, Blue Max II,

where the states of the aircraft (x, y, z, heading, pitch, velocity, etc) are

updated to reflect the current heading, pitch and velocity commands. The

64



position of the two aircraft are presented by ARCADE via a two-dimension,
three-view display, Figure 39.

"- A nza
7Neural Network AnPlu

Plu
ProcessingP
Routinesus

Initial

Conditions -
Setup AFC StateProcessing

ARCADE Routines~CENTRAL
User Input CONTROL

Interface
Blue Max 11
Flight Path
Generator

3-View, Color
Visualization
Routines

Figure 40. Internal Architecture of ARCADE.

65



NEURAL NETWORK

€lwfrome A~.

eq, v pre IPLOT NEW

F eFl INITIALt olU of A
0ONDITIONS UXT Z (FT)

Figur 2 ARCD intal' C itn mF
for boMh I d voclors lr each ammurt IT TkE

- HUMAN

The flight path generat or isM primar copneto ACD. ttke h

demsiren mnuem Vcomt e Ee t

Figure 41. Flow of Control of ARCADE.

0.5 SYSTEM DATA: UPDATE RATE (SEC)
0.0 0.0 15000.0 USR AC: X (FT), Y (FT), Z (FT)
0.0 0.0 800.0 HDNG (DEG), FITCH (DEG), VEL (FT/SEC)
0.0 10000.0 0.0 ANS AC: A-O-N (DEG), RANGE (FT), DELTA ALT (FT)

180.0 0.0 800.0 HDNG (DEG), PTCH (DEG), VEL (FT/SEC)

Figure 42. ARCADE Initial Conditions File.

The flight path generator is a primary component of ARCADE. It takes the

desired maneuver commands from the ARCADE network, as well as the user, and

generates trajectories consistent with aircraft flight characteristics. Blue

Max II was selected as the flight path generator to be used by ARCADE.

Since it is the function of the flight path generator to update the

position and orientation of the aircraft per the commands provided by the

ARCADE networks, the profiles generated by Blue Max II were compared with the

profiles of the SAAC engagements. A Blue Max II validation utility, BM2Valid,

was developed to validate the Blue Max II flight path generator against the

training data collected from the SAAC. The maneuver commands generated by the

66



SAAC were passed to Blue Max II and the profile generated was plotted against

the original SAAC flight profile. Ideally, the profile generated by Blue Max

II would be identical to the SAAC engagement profile. It was discovered that

Blue Max II, while performing reasonably well in many cases, was not able to

perform all of the maneuvers present in the SAAC engagement data. For

example, Blue Max II is unable to duplicate SAAC maneuvers where large heading

changes occur with the aircraft at extreme pitch angles, as when an aircraft

passes through the vertical. In addition, controlling the adversary aircraft

via heading, pitch and velocity commands does not allow the ARCADE network to

control the aircraft's roll angle. The roll computed by Blue Max II may or

may not be the optimal roll angle. It is believed that these anomalies do

degrade the performance of the ARCADE networks, but the extent of the

degradation is unknown.

ARCADE Neural Network Architecture

The development of a network structure for ARCADE was approached by first

determining a minimal set of tactical input data that might be required by a

combat pilot when making ACM decisions in a one-versus-one engagement.

Similarly, the components of the output response were chosen to meet a minimal

set of aircraft flight control commands to direct aircraft maneuvering. The

time dependency of the dynamic tactical situation data is also represented in

the input vector.

An overview of the internal architecture of the ARCADE neural network is

illustrated in Figure 43. The following describes how the various parameters

of the tactical situation/maneuver response vectors are represented at the

input and output layers of the ARCADE neural network. When describing the

current tactical situation and maneuver response, the aircraft controlled by

the neural network is called the ANS aircraft and the other aircraft, usually

controlled by a human user, is referred to as the adversary aircraft. All

relative variables are computed relative to the ANS aircraft.

67



DATA TO TACTICAL ENVIRONMENT
SIMULATION AND DISPLAY

OUTPUT LAYER I o o ... o PARAMETERS TO DEFINE THE

APPROPRIATE MANEUVER RESPONSE

7 4-EMERGENT RULES
HIDDEN LAYER 0 0 0 0 0 0 0 "'" 0 GOVERNING ACM

DECISION-MAKING

PARAMETERS TO

INPUT LAYER .000--0 000 0 0 0--ol ... ooo-..ol 5 DEFINE THE TACTICAL
SITUATION (SAMPLED
THROUGH TIME TO
PROVIDE TEMPORAL

DATA FROM TACTICAL ENVIRONMENT SIMULATION REPRESENTATION)

Figure 43. ARCADE ANS Internal Architecture.

Input Layer

In the ARCADE neural network, the input vector contains parameters which

define the current tactical geometry in terms of slant range, azimuth angle to

adversary, angle-off-tail (AOT) in the horizontal plane, closing velocity (VC),

elevation angle to adversary, ANS aircraft's altitude, ANS aircraft's angle-

of-attack (AOA), ANS and adversary aircraft's velocity, ANS and adversary

aircraft's pitch angle, ANS and adversary aircraft's roll angle, ANS and

adversary aircraft's turn rate, and ANS aircraft's G factor. See Table 3 for

the ARCADE network input parameters and their operating ranges. Certainly,

there are other dynamic parameters which may be included, but this set meets

the development criteria set forth previously and seems to capture enough

information about ANS aircraft status and the relative location of the

adversary aircraft to provide a basis for reasonable and realistic ACM

performance.

68



Table 3. ARCADE Network Input Parameters and Operating Range

Slant Range : 0 to 13,000 feet

Azimuth Angle : +/- 180 degrees

Angle-Off-Tail (AOT) :+- 180 degrees

Closing Velocity (V,) :+- 1,500 ft/sec

Altitude : 0 to 20,000 feet

Elevation Angle : +/- 90 degrees

Angle-of-Attack (AOA) : -10 to 25 degrees

Velocity : 100 to 1,000 ft/s

Adversary's Velocity : 100 to 1,000 ft/s

Pitch :+/- 90 degrees

Adversary's Pitch :+/- 90 degrees

Roll :+/- 180 degrees

Adversary's Roll :+/- 180 degrees

Turn Rate : 0 to 45 deg/s

Adversary's Turn Rate : 0 to 45 deg/s

G Factor : -1 to 9 g's

The set of network input parameters used in ARCADE are listed in Table 3.
They are defined as follows. The direct line of sight (LOS) angle from the

ANS aircraft's longitudinal axis to the adversary aircraft's position is

defined by the azimuth angle. The distance between the two aircraft, along

the LOS, is defined by slant range. The Angle-Off-Tail (AOT) provides
information about the orientation of the adversary aircraft relative to the

line of sight in the horizontal plane. VC indicates the rate of closure of the

two aircraft (positive if the aircraft are closing range). The angle from the
horizontal plane in which the ANS aircraft resides to the adversary aircraft

is defined by the elevation angle. The absolute altitude of the ANS aircraft

is also included. AOA is the angle that the ANS aircraft's wing makes with

69



the direction of airflow. Velocity parameters provide information about the

absolute, ground velocity of each aircraft. Roll and pitch angles provide.

aircraft orientation information. The turn rates and G factors indicate how

quickly each pilot is pulling his aircraft's nose across the sky. Each of the

above parameters was chosen for the input vector because it represents a piece

of crucial, top-level, dynamic data relevant to the evolving ACM environment.

The basic geometry of a typical ACM tactical situation and some of the input

vector parameters are illustrated in Figures 44 and 45.

I

IAdversary

ANS Azimuth . ircraftANS Angle ,-I .

Aircraft

AOT
Slant Range

1 .(LOS)

Figure 44. Typical Air Combat Geometry Top View.

70



ANS
Aircraft pitch

Elevation
"-.Angle%a . - Adversary

Slant Range Aircraft
(LOS) Roll

Figure 45. Typical Air Combat Geometry - Side View.

Another important aspect of the input feature vector is the element of

time. A pilot makes his maneuvering decisions based not only on a "snapshot"

of the current tactical situation, but also on how the situation has been

evolving over time. In the ARCADE neural network, the input feature vector

contains multiple copies of the basic parameter set described above. Each

copy represents a different point in time over the last few seconds. The

resulting input layer thus consists of one set of input parameters for the

present situation, another for the situation one half second ago, and

additional sets for two, and five seconds in the past. This adds up to a

total of 64 input PEs (4 sets of 16) as depicted in Figure 46. As with the

basic set of input parameters, this is a preliminary design which may be

changed if different time periods or sample times seem to produce better ACM

performance. The current version of the ARCADE neural network operates at two

cycles per second. Every half second, the system is provided with new

tactical input data from the last five seconds to produce an associated

maneuver response.

71



CCC

NO 0 Ru~ 0U~ ** 00O CO*40e* d

00,000 000000 000000 ooo***0
T _ TNow -.-5 Seconds 2.0 Seconds -5.0 Seconds

Figure 46. ARCADE Neural Network Input Layer.

Output Layer

At the output layer of the ARCADE neural network, the system has been

designed to produce output parameters compatible with the flight commands

required by the Blue Max II aerodynamic model. The output processing elements

of the ARCADE network therefore represent three flight path commands for

continuous control: a desired change in heading, pitch, and velocity. These

output variables are referred to as delta command variables because they

represent the difference between the current and desired value for each flight

control parameter. The neural network could be trained to produce another set

of flight control parameters, such as roll rate, turn rate and velocity, if

necessary. The current set of output parameters and their operating ranges

are listed in Table 4.

Table 4. ARCADE Network Output Parameters and Operating Ranges.

Delta Heading : +/- 60 degrees

Delta Pitch : -50 to 30 degrees

Delta Velocity : -120 to 80 ft/s

72



Unlike the input vector, the output PEs need not contain multiple

representations over time. Each time the neural network is provided with a

set of tactical parameters for the last few seconds, it will provide the

aircraft flight model with the set of flight path delta commands to control

the aircraft. It is necessary, however, to use a time window on the SAAC

output data stream to determine the desired flight path commands relative to

the time now. In addition to the time sampling window for the input layer,

Figure 47 shows how such a time window is used to read the output data

parameters. While the input values are based, in part, on the previous

conditions, the output values are determined by looking ahead from the current

maneuver state to the state as it will appear a few seconds later. The

heading, pitch and velocity values on the SAAC data tape at that future time

are used to compute the current desired output values for the r~twork. As

with the input window parameters, the exact size of the output data window has

been varied experimentally to ascertain an optimal time projection of 1.5

seconds.

ACM OR SAAC DATA TAPE

PARAMIkEIAS
HDG
VEL

A~A rr T

IM"q';u~aIo U 111I
PAPAMTER

Figure 41. Data Windows for Reading Information from the SAAC ACM Data Tapes.

73



ARCADE Network Training Process

The ARCADE network training process consists of the collection and

preprocessing of trairiong data, the training of ARCADE networks, and the

performance evaluation of these networks.

Training Data Collection and Preprocessing

Initially, it was thought that the Air Combat Maneuvering Instrumentation

(ACMI) would provide the best source of data, but after some consideration, it

was determined that data from the SAAC at Luke AFB in Arizona would yield the

best overall results. The nature of the SAAC exercises and data storage

format allows a more direct specification of the type of data selected for

training. There is a certain amount of performance evaluation data available

with each scenario, and there is generally a wealth of data available to

choose from.

The simulator engagement conditions which were used to generate the

training data are as follows. Subjects flew one-versus-one exercises using

identical aircraft, F-16 versus F-16. The aircraft were equipped with

unlimited AIM-9L missiles and gun rounds. Each pilot was instructed to

continue the fight until there is a kill or the controller terminates the

engagement. The maximum engagement time is generally three minutes in

duration. The aircraft begin the engagement within visual range (WVR), either

side-by-side with one nautical mile of separation or head-to-head with two

nautical miles of separation. Both aircraft begin the engagement at 15,000

feet traveling at 500 nautical miles per hour. These are reasonable

conditions for creating a complete and consistent set of ACM network training

data.

The "ACM Expert System Analyst Manual" contains samples of the SAAC

engagements used to train the ARCADE neural networks. The engagements are

displayed via a two-dimension, three-view display similar to that used by

ARCADE. The large display is a top dowr view while the two smaller displays

are side views. Aircraft kills are depicted with an "X" for AIM-9L hits and

an "0" for quo, i,,Ls. Note that because the enyer,etf',U.t are between pilots of

similar skill levels flying identical aircraft, each aircraft spends most of

74



the engagement in a relatively neutral position with few of the shots fired

resulting in an adversary aircraft kill.

Once the ACM engagement data had been collected, it was converted into

the temporal tactical situation/maneuver response neural network input/output

vectors described above. Two network training segments were created from each

SAAC engagement; one from aircraft number one's perspective and a second from

aircraft number two's perspective. The network training data generated from

the SAAC engagements were then grouped into several training and testing sets.

These training and testing sets are listed in Table 5. "SAAC_12.TRN" is

comprised of training segments selected from the original 12 SAAC engagements

collected at the program's inception. Later in the program, it was deemed

necessary to collect an additional 20 engagements from the SAAC.

"SAAC_32.TRN" is comprised of training segments selected from the expanded set

of 32 SAAC engagements. Not all of the SAAC engagements were used for network

training. "SAAC_32.TST" contains SAAC engagements that were intentionally

withheld from the network training sets for network evaluation purposes. All

of the engagements collected from the SAAC were used for network training or

testing. No attempt was made to preprocess, classify or grade the engagements

collected from the SAAC.

Table 5. SAAC Training and Testing Data Files

ARCADE Training File Name: SAAC_12.TRN

SAAC engagements included in training file:

040106 (2), 040115 (1&2), 040211 (1&2), 040313 (132), 420305 (1&2), 420306 (1&2),
420309 (1&2), 500205 (1&2), 500210 (1&2). 500305 (1&2), 510205 (112), 510214 (1&2)

ARCADE Training FiLe Name: SAAC.32.TRN

SAAC engagements included in training file:

040106 (2), 040115 (1&2), 040211 (1&2), 040313 (1&2), 420305 (1&2), 420306 (132),
420309 (112), 500205 (1&2), 500210 (1&2), 500305 (1&2), 510205 (1&2), 510214 (1&2),
070307 (1&2), 080209 (1&2), 080410 (112), 080507 (112), 110417 (112), 120115 (1&2),
120317 (1&2), 140208 (1&2), 200211 (1&2), 151505 (112), 262512 (112), 300315 (112),
320206 (1&2)

ARCADE Testing File Name: SAAC_32.TST

SAAC engagements included in testing file:

040106 (1), 070206 (1&2), 110306 (112), 200308 (112), 250106 (1&2), 260115 (1&2),
300512 (1&2)

75



ARCADE Network Training

With the ARCADE training and testing data generated, it was possible to

begin training ARCADE neural networks. ARCADE network training was

accomplished with the use of the Neural Network Training System. Several

neural networks were trained while experimentally varying the size of the

hidden layer, the number of hidden layers, the initial network weights, the

weights' update process, the learning rates, the network training data and the

duration of network training. Appendix D contains the network weights and

constants' file name, network structure, training parameter definitions, and

network training and testing statistics for several of the networks developed

for ARCADE.

Using ARCADE Network Experiment #1 found in Appendix D as an example, the

ARCADE network development process proceeded as follows. Based on earlier

experimentation, practical experience and intuition, the network structure and

training parameters were defined. A network consisting of one hidden layer

with eight PE's was selected. The weights were initialized randomly using a

random number seed of 12345 and a maximum range of +/- 0.2. A logistics

activation function with a slope of 1.0 was selected. The learning rates for

the output/hidden layers were set to 0.1/0.6, respectively. The largest, most

robust training set available, SAAC_32.TRN, was selected as the network

training set. Batching was selected as the weight update process. The batch

size was set equal to the average number of tactical situation/maneuver

response pairs per SAAC engagement, 250.

While ARCADE networks were being trained using the Neural Network

Training System, the Mean Squared Error (MSE) and Mean Absolute Error (MAE)

were generated. The goal of the Neural Network Training System was to

minimize MSE. Several times during ARCADE Network Experiment #1, the

constants and weights of the network were saved and MSE/MAE recorded, see

Table 6. Network training was continued until MSE and MAE began to flatten

out to MSE/MAE values of 0.085/0.443, respectively. The length of training

was approximately fifteen million iterations, which translates to several

hours of network training.

76



Table 6. ARCADE Network Experiment #1 - Network Definition and MSE/MAE.

Network Structure Network Parameters

64 Random Weights Seed: 12345

Initial Weights Range: +/- 0.2

Activation Function: Logistic
Slope: 1.0

I Learning Rates: 0.1, 0.6

EBatch Size: 250

Training Set: SAAC_32.TRN

Testing Set: SAAC 32.TST

Network Name ltnraions Training MSE/MAE

WVR_15 250,000 0.155 / 0.488

WVR_16 500,000 0.136 / 0.448

WVR_18 750,000 0.126 / 0.428

WVR_19 1,250,000 0.115 / 0.404

WVR_20 1,500,000 0.112 / 0.393

WVR_21 2,250,000 0.104 / 0.378

WVR_22 2,500,000 0.103 / 0.376

WVR_23 3,250,000 0.101 / 0.371

WVR_24 3,750,000 0.099 / 0.368

WVR26 5,500,000 0.097 / 0.362

WVR_27 10,500,000 0.090 / 0.334

WYR_28 12,500,000 0.088 / 0.342

WVR.29 14,500,000 0.086 / 0.337

WVR_30 15,500,000 0.085 / 0.334

77



The rest of the ARCADE Network Experiments found in Appendix D were

conducted in a similar manner. The network structure, training parameters

and/or training set were experimentally modified and the training process

repeated.

ARCADE Network Performance Evaluation

The performance of the ARCADE networks was evaluated by employing both

objective and subjective means.

Objective Network Performance Evaluation

Objective evaluation of the ARCADE networks is comprised of Mean Squared

Error (MSE) and Mean Absolute Error (MAE), statistics which indicate how well

the network maps temporal tactical situations to maneuver responses.

Continuing with experiment #1 of Appendix D, the previously saved ARCADE

networks were tested to see how well they were able to arrive at a generalized

solution when exposed to SAAC engagements that were withheld from network

training. The test set, SAAC_32.TST, is comprised of SAAC engagements that

were intentionally withheld from the network training set. Using the Neural

Network Training System, each saved network was tested on the engagements in

the test set and the MSE and MAE values generated were recorded, see Table 7.

These statistics are an excellent indication of the network's ability to

arrive at a generalized solution within the tactical situation domain of the

SAAC engagements.

Since the training set is not a complete set of the tactical situations

expected to be encountered in a dynamic, run-time environment, it is desirable

to have an ARCADE network capable of generalizing the training data to arrive

at reasonable responses to unique tactical situations rather than "lock-in" on

only the tactical situations found in the training set. Likewise, as a

network is trained on the tactical situation/maneuver response examples, the

network will reach a point where additional training will decrease that

network's ability to arrive at a generalized solution. For this reason, it

is reasonable to expect that the best ARCADE networks would be the networks

that minimize the test MSE and MAE rather than the training MSE and MAE. In

78



Table 7. ARCADE Network Experiment #1 Test MSE/MAE.

Network Structure Network Parameters

64 Random Weights Seed: 12345

Initial Weights Range: +/- 0.2

Activation Function: Logistic
Slope: 1.0

I Learning Rates: 0.1, 0.6

IBatch Size: 250

Training Set: SAAC_32.TRN

Testing Set: SAAC_32.TST

Network Name Iterations Training MSE/MAE Testina NSE/MAE

WVRI5 250,000 0.155 / 0.488 0.133 / 0.451

WVR_16 500,000 0.136 / 0.448 0.122 / 0.423

WVR_18 750,000 0.126 / 0.428 0.115 / 0.406

WVR_19 1,250,000 0.115 / 0.404 0.108 / 0.387

WVR_20 1,500,000 0.112 / 0.393 0.106 / 0.382

WVR_21 2,250,000 0.104 / 0.378 0.102 / 0.373

WVR_22 2,500,000 0.103 / 0.376 0.101 / 0.371

WVR_23 3,250,000 0.101 / 0.371 0.099 / 0.368

WVR_24 3,750,000 0.099 / 0.368 0.098 / 0.365

WVR_26 5,500,000 0.097 / 0.362 0.094 / 0.356

WVR_27 10,500,000 0.090 / 0.334 0.088 / 0.337

WVR_28 12,500,000 0.088 / 0.342 0.087 / 0.336

WVR_29 14,500,000 0.086 / 0.337 0.086 / 0.330

WVR_30 15,500,000 0.085 / 0.334 0.086 / 0.331

79



the case of experiment #1 of Appendix D, the network saved after 14.5 million

training iterations, WVR_29, had the lowest test MAE value, 0.330. See Figure

48.

ARCADE Network Experiment #1 - Training and Testing MAE
0.51

05Training MAE
0.48 - -Testing MAE

0.46

0.44

0.42-
0.4-

0.36

0.34- --------- =- -------

0.320 2000 4000 6000 8000 10000 12000 14000 16000

Iterations (xlOOO)

Figure 48. ARCADE Network Experiment #1 - Training and Test MAE.

Subjective Network Performance Analysis

Subjective evaluation of the ARCADE networks takes place in the run-Lime

environment of ARCADE. Using ARCADE, a human user maneuvers an aircraft

controlled by the computer keyboard against an adversary aircraft controlled

by one of the previously trained ARCADE neural networks.

In order to subjectively evaluate the performance of an ARCADE network,

it is crucial to be familiar with the SAAC engagements that the network is

designed to replicate. It should be the goal of the ARCADE user to present

the ARCADE network with tactical situations which are typical of those present

in the SAAC engagements of which the network was trained. It is not, however,

necessary for the user to try to create tactical situations which are

80



identical to those found in the training set. The ARCADE networks should be

able to generalize to unique tactical situationr within the domain of the SAAC

engagements on which they were trained.

Figure 49 shows an engagement between a human user, with many hours of

ARCADE experience, against an adversary aircraft controlled by ARCADE network

WVR_29 -- the network of ARCADE Network Experiment #1 which had the lowest

test MAE. The engagement begins with each aircraft flying 500 knots, head-to-

head at 15,000 feet, with two nautical miles of separation. Each aircraft

turned east upon passing one another and proceeded into what resembles diving-

rolling scissors. Both the user and adversary aircraft terminate their

descent at approximately 500 feet to avoid impact with the ground. The entire

engagement is contained within the cylindrical area between 15,000 feet and

the ground, two nautical miles in diameter.

ARCADE Neural Network System

line: 123.5 ESC to exit
N Owiship Adversary

NET: p WVR 29
HDG: 118.0 / 118.8 4.2 / 28.8
PCH: 0.0 / -0.0 -3.7 / -1.8
UEL: 475.0 / 474.8 339.9 / 339.6
AANI: -56 / 0 56 / 56

U

U

Figure 49. ARCADE Engagement - User Aircraft versus Adversary WVR_29.

81



Given the difficulty in flying effective ACM from a computer keyboard, it

is effective to allow two aircraft controlled by ARCADE networks to engage one

another. Figure 50 shows an engagement between two ARCADE network controlled

aircraft, each aircraft controlled by the ARCADE network WVR_29. This

engagement is an example of two equally matched adversaries engaged in air

combat, as was true with a large portion of the SAAC engagements. Notice that

this engagement also exhibits the characteristics present in the SAAC

engagements. It is a well-contained engagement, each aircraft exchanging an

altitude advantage while descending toward the ground.

ARCADE Neural Network Sgsten

Time: 14
K Oimship Adversarg

NET: WUR.29 WVR..29
HDG: 104.9 / 91.1 304.7 / 287.6
PCH: 27.7 / 36.9 -12.6 / -19.4
UEL: 485.8 / 521.5 783.0 / 684.9

AA I: -18 / 1 18 / 18
*1 U

U

Figure 50. ARCADE Engagement - Adversary WVR_29 versus Adversary WVR_29.

Conclusions of Network Performance

An ARCADE network is believed to possess the ability to generalize unique

solutions within the problem domain when the mean ahsn1utP error (MAE) of the

test set is approximately equal to the MAE ot the training set. The objective

82



network performance evaluation of ARCADE networks indicate that several

networks have been created which possess the ability to arrive at generalized

solutions to unique tactical situation within the domain of the SAAC

engagements. The objective network performance evaluation does not, however,

give any indication of the ARCADE network's ability to generalize to a

reasonable solution for tactical situations which are outside of the domain of

the SAAC data.

The ultimate evaluation of ARCADE networks is its performance in t0e run-

time environment of ARCADE. While many ARCADE networks produce flight

profiles similar to SAAC engagement profiles, poor network performance has

been observed in ARCADE. It is presumed that the poor performance occurs when

the network is presented with tactical situations outside the domain of the

SAAC engagements. That is, the user and adversary aircraft have maneuvered

themselves into a tactical situation that is outside of the domain of the SAAC

engagements on which the ARCADE network adversary was trained. For example,

while the ARCADE networks are capable of performing diving-rolling scissors

against an opponent aircraft, the networks do not provide optimal maneuver

commands when presented with a non-maneuvering target. Engagements with non-

maneuvering targets do not appear in the SAAC engagement training set.

In conclusion, both the objective and subjective evaluation of network

performance indicate that an ARCADE network controlled adversary is capable of

performing reasonable and realistic air combat against a human pilot.

However, the operational domain of the ARCADE network adversary appears to be

smaller than the desired set of tactical situations in which the network

provides optimal responses. It is believed that the operational domain of the

ARCADE networks could be expanded to the point of optimal performance under

all conceivable tactical conditions with the methodical collection of an

expanded set of SAAC engagements.

GENERAL FINDINGS AND CONCLUSIONS

Neural Network Structure

With respect to the structural definition of a particular neural network,

it can be said that once the input and output layers are defined as a result

83



of the chosen input/output representation, the construction of the hidden

layer or layers is largely the result of educated guesses and trial-and-error.

The best approach seems to be to start small and work up to progressively

larger networks, keeping in mind that more PEs mean more interconnections, and

therefore, slightly longer training times. Furthermore, too many PEs in the

hidden layer will interfere with the network's ability to form a general

solution to the mapping, and can cause it to perform preferentially well on

the training data while failing at unique situations. There is usually an

optimal number of PEs which provides the best network performance for the test

set while avoiding the loss of generalization. The actual number of hidden

layers should be kept to one unless additional layers show a marked

improvement in either mean absolute error, mean squared error or general

production performance.

Spanning the Solution Space and Generalization

A fundamental conclusion of the neural network research conducted for

this program is that the ability to correctly reproduce expert behavior from

exemplar data is critically dependent on how the input/output association is

represented and how the training data is selected. The concept of spanning

the solution space is a crucial element in determining the final performance

of the network under the full range of operating conditions. The process in

which input/output data is sampled from the total solution space will directly

affect the final mapping at which the system arrives. This mapping will

either allow the system to successfully generalize its solutions from known to

unique conditions, or cause erratic behavior in all but a few input cases.
The experiments previously described, especially the Lead Pursu it/ Intercept

demonstration, clearly illustrate the power of ANS representations to

reproduce expert behavior when they are properly designed and trained. To

accomplish the same level of performance for the ACM Expert System, methodical

generation and selection of the SAAC data will be necessary to ensure

consistent pilot behavior and an even distribution over the solution space.

84



Training Parameter Optimization

There are two basic phases to optimization: initializing the weights and

selecting the training parameter values. In both cases, the goal is to get

the network to converge on the global minimum as quickly as possible. By

trying different values for the initial weights, the chances are increased

that a path to the global minimum will be found. The optimization of the

initial weight ranges serve to accelerate the process by beginning the

gradient descent from an optimal point on the weight surface. The

optimization of the training parameters (the learning rates, momentum terms,

etc) is also motivated by reaching the local minimum, and hopefully the global

minimum, as quickly as possible. However, the effect of the learning rates

and momentum terms on the update process can be quite complicated. Slow

learning rates (low a values) ensure that the minimum well is not skipped by

causing the descent process to evolve in a smooth, continuous fashion, but the

number of required iterations can be greatly increased. A faster learning

rate may jump over local minima and proceed more quickly to a solution, but

may also skip right over the global minimum.

It may seem as though any values chosen for the initial weights and the

network training parameters will be sufficient to produce an optimal solution

given enough training time. In this view, the only effect of the variables is

on the amount of time required to reach a certain level of performance. In

some cases, this may be true because a complex weight structure may have many

pathways to the global minimum. But since the gradient descent process does

not always proceed monotonically across the weight space to the global

minimum, the process may settle into local minima wells, or it may proceed

very slowly over relatively flat areas of the weight space. This means that

the choice of the initial weight values and the variables which control the

movement across the weight space has a very pronounced outcome on the final

performance of the network. It was also discovered that with the creation of

ARCADE networks, it was essential that batching be selected as the weight

85



update process. While it is true that the gradient descent weight update

process was designed with batching to be used, single iteration weight

updates, nonbatching, has been a close enough approximation to solve many

other problems.

Amount of Training

In general, the more time spent training the network, the lower the mean

squared error and the better the final performance of the network. Since MSE

reduction is an asymptotic process, as was shown in Figure 6, the amount of

improvement in the mapping will also flatten out over time. In the

experiments reported previously, training was carried out until MSE seemed to

have flattened out. The number of iterations required to reach this level is

highly dependent on the current problem and the training set being used. Time

requirements are based on both the number of iterations and the number of

interconnections that must be updated in the network. For the types and sizes

of problems faced by the early ACM Expert System experiments, it generally

required between ten and thirty thousand iterations to converge on a solution

to the mapping. Time requirements were on the order of a few seconds.

Solutions to the Lead Pursuit/Intercept problem required hundreds of thousands

of iterations, which translated to ten to fifteen minutes of training.

Solutions to ARCADE required millions of iterations, which translated to a few

hours of training.

For complex problems, the minimization of network training MSE and MAE is

not be the ultimate goal in network training. For those problems where the

training data is only a sample of the operating domain, the optimal network

will be a set of weights prior to the minimization of network training MSE.

A network which has the lowest test MSE/MAE will perform better over-all.

86



Summary of Network Performance

At this point, it seems very likely that neural networks can provide a

unique and workable solution to some important elements of the ACM Expert

System problem. The results documented in this report show that ANS

architectures can successfully capture a wide range of expertise and form

generalized respcnses to input conditions. ANS architectures provide a way to

overcome the knowledge engineering bottleneck, they produce robust solutions

even under novel circumstances, and they are relatively quick and easy to

implement. It is evident, however, that one neural network alone is not

sufficient to produce a diverse and reliable model of pilot expertise under

the full range of air combat conditions. It is expected that some hybrid of

artificial neural systems and rule-based expert systems will eventually be

used to provide a much higher level of cognitive simulation than either one

could provide individually.

87


